
On Iterative Hard-Thresholding:
Gradient Estimation and Non-Convex

Projections

by

William de Vazelhes

PhD thesis submitted to the
Deanship of Graduate and Postdoctoral Studies

In partial fulfillment of the requirements
For the Ph.D. degree in

Machine Learning

Department of Machine Learning
Mohamed bin Zayed University of Artificial Intelligence (MBZUAI)

© William de Vazelhes, Abu Dhabi, UAE, 2024

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

Supervisor: Dr. Bin Gu
Assistant Professor, Department of Machine Learning,
Mohamed bin Zayed University of Artificial Intelligence (MBZUAI)

External Examiner: Dr. Xiao-Tong Yuan
Professor, School of Intelligence Science and Technology,
Nanjing University

Internal Member: Dr. Chih-Jen Lin
Affiliated Professor, Department of Machine Learning,
Mohamed bin Zayed University of Artificial Intelligence (MBZUAI)

Internal Member: Dr. Karthik Nandakumar
Associate Professor, Department of Machine Learning,
Mohamed bin Zayed University of Artificial Intelligence (MBZUAI)

Internal Member: Dr. Zhiqiang Xu
Assistant Professor, Department of Machine Learning,
Mohamed bin Zayed University of Artificial Intelligence (MBZUAI)

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

The primary contribution of this thesis is to analyze several new extensions of the
Iterative Hard-Thresholding (IHT) algorithm. We first focus on analyzing a zeroth-order
extension of IHT, zeroth-order hard-thresholding (ZOHT): in particular, we analyze the
conflict between the error of the zeroth-order gradient estimator, and the expansivity of
the hard-thresholding operator. We prove global convergence guarantees in the restricted
strongly convex (RSC) and restricted smooth (RSS) setting, for such algorithm. We then
analyze the convergence of variance-reduction variants of the ZOHT algorithm (in the RSC
and RSS settings), and analyze how the conditions on the number of random directions are
improved. We then propose a variant of the original proof of convergence of ZOHT in the
non-convex and discontinuous setting, useful for instance in a reinforcement learning setting.
Then, we analyze a generalization of IHT which can tackle additional convex constraints
verifying mild assumptions, in the zeroth-order and first-order (stochastic and deterministic)
settings: when doing so, we also revisits previous proofs of convergence in risk for IHT,
providing simpler proofs for existing results, removing the original system error present
in the first proof of ZOHT, and extending the convergence result of all those algorithms
to the case with extra constraints. Finally, we analyze an algorithm for sparse recovery,
IRKSN (Iterative Regularization with k-Support Norm), inspired by a dual perspective
on IHT, and show that its provides different conditions for recovery than IHT and usual
sparse recovery algorithms based on the ℓ1 norm, therefore providing a useful complement
to those algorithms for sparse recovery.

iv

In memory of my grandmother Josèphe.
To my wife Mouna and my daughter Ayla.

v

"’Tis a lesson you should heed–
Try again;
If at first you don’t succeed,
Try again."

– William Hickson

vi

Acknowledgements

First and foremost, I would like to thank my supervisor, Bin Gu, for his everlasting
support and guidance. He helped me, advised me, and encouraged me during the thesis;
thanks to him I could accomplish more than I thought I could. I would also like to express
my gratitude to Xiao-Tong Yuan for sharing with me his enthusiasm in exploring proof
techniques for hard-thresholding algorithms. I also extend my gratitude to the other
members of the jury, Chih-Jen Lin, Karthik Nandakumar, and Zhiqiang Xu and to the
professors with whom I have co-authored papers, with special thanks to Huan Xiong.

I would also like to thank all the professors at MBZUAI for their amazing lectures, in
particular Martin Takáč for his optimization course, our Department Chair Kun Zhang,
our Provost Timothy Baldwin, our President Eric Xing, as well as all the staff of MBZUAI
and all the persons involved in making this place so special and caring.

I would also like to thank my friends, colleagues, students and researchers who I met
during my PhD, especially Hilal, Bhaskar, Velibor, Srinivas, Haiyan, Dilshod, Chengqian,
Zhenhao, Boyang, Zhengqing, Shunxing, Hualin, Wanli, Xinzhe, Xiaohan, Huimin, Anas,
Klea, Nhat, The Phong, Steven, Sahal, Bakhita, Hashmat, Asma, Faris, Naif, Abdelrahman,
Sultan, Sulaiman, Numan, Ashraf, Hanan, Shahina, Salem, Brahim, Mijd, Nada, Xiangrui,
Alex, Nicolas, Six, Sasha, Abdurakhmon, and many more.

I also thank all the colleagues, professors, and friends, whom I was lucky to cross
paths with, earlier on in my journey before starting a PhD: Romain, Nicolas, Merwan,
Matthieu, Philippe, Thibault, Jean-Cyril, Thomas C., Thomas M., Timothée, Victor,
Clément, Aurélien, Nathalie, Marc, Rémi, Pascal, Mikaela, Carlos, Mathieu, Mahsa, César,
Mariana, Onkar, Brij, Arijus, Igor, Moitree, Pradipta, Géraud, Thibault, Tanh, Michal,
Gaël, Alexandre, Olivier, Guillaume, Loïc, Roman, Nicolas, Joan, Joris, Matei, Pierre,
Septimia, Abdellatif, Charles, Alexis, Paul, Maxime, and many more.

Aside from work, I am also grateful for my friends from France, the UAE, and beyond,
with whom I can always unwind and recharge.

I am also deeply grateful to my family for their everlasting support.

Finally, I am eternally grateful to my amazing wife Mouna for her loving support and
for standing by my side throughout the years.

vii

Table of Contents

List of Tables xii

List of Figures xiii

1 Introduction 1

1.1 Motivations . 1

1.2 Background . 2

1.2.1 Convex Optimization . 2

1.2.2 Stochastic Optimization . 4

1.2.3 Zeroth-Order Optimization . 4

1.2.4 Constrained Convex Optimization 5

1.2.5 Hard-Thresholding Algorithm . 7

1.2.6 Non-smooth Optimization . 8

1.3 Bibliographic Notes . 9

1.4 Outline . 10

1.5 Notations . 13

2 Zeroth-Order Hard-Thresholding 15

2.1 Introduction . 15

2.2 Preliminaries . 18

2.3 Algorithm . 18

2.3.1 Random Support Zeroth-Order estimate 18

2.3.2 SZOHT Algorithm . 20

2.4 Convergence analysis . 21

2.4.1 Weak/Non Dependence on Dimensionality of the Query Complexity 23

2.5 Proofs of the Main Results . 24

viii

2.5.1 Auxilliary Lemmas . 24

2.5.2 Proof of Proposition 1 . 27

2.5.3 Proof of Proposition 1 . 35

2.5.4 Proof of Theorem 1 . 35

2.5.5 Proof of Remark 4 . 39

2.5.6 Proof of Corollary 1 . 42

2.5.7 Proof of Corollary 2 . 44

2.6 Visualization: Projection of the Gradient Estimator onto a Sparse Support 45

2.7 Parameters Relations: Value of ργ depending on q and k∗ 46

2.8 Experiments . 46

2.8.1 Dimension Independence/Weak-Dependence 46

2.8.2 Sensitivity Analysis . 47

2.8.3 Real Data Experiments . 48

2.9 Conclusion . 50

2.10 ZOHT Extension: Variance Reduction . 52

2.10.1 Introduction . 52

2.10.2 Experiments . 54

2.11 ZOHT Extension: Discontinuous and Non-convex Case 64

2.11.1 Preliminaries . 65

2.11.2 Objective Function . 65

2.11.3 Our Proposal: NESHT . 66

2.11.4 Convergence Analysis . 67

2.11.5 Proofs of the Main Results . 71

3 Iterative Hard Thresholding over Sparse Support-Preserving Sets 81

3.1 Introduction . 81

3.2 Related Works . 83

3.2.1 Local Guarantees for Combined Constraints 84

3.2.2 Global Guarantees for IHT and RSC Functions 84

3.3 Preliminaries . 84

3.3.1 Proof of Remark 10 . 85

3.4 Deterministic Case . 86

3.4.1 Algorithm . 86

ix

3.4.2 Convergence Analysis . 87

3.5 Proofs for Deterministic Optimization . 90

3.5.1 Proof of Lemmas 11 and 13 . 90

3.5.2 Proof of Theorems 3 and 4 . 92

3.5.3 Lower Bound on the Sparsity Relaxation 96

3.6 Extensions: Stochastic and Zeroth-Order Cases 98

3.6.1 Stochastic Optimization . 98

3.6.2 Zeroth-Order Optimization (ZOO) 100

3.7 Proofs for Stochastic and Zeroth-Order Optimization 102

3.7.1 Discussion on Restricted Smoothness Assumptions 102

3.7.2 Proof of Theorems 6 and 7 . 104

3.7.3 Proof of Corollary 3 . 117

3.7.4 Proof of Theorems 8 and 9 . 118

3.7.5 Proof of Corollary 4 . 140

3.8 Experiments . 142

3.8.1 Synthetic Experiments: Illustrating the Sparsity/Optimality Trade-Off143

3.8.2 Synthetic Experiment: Comparing Two-Step Projection and Eu-
clidean Projection . 144

3.8.3 Real Data Experiment: Portfolio Index Tracking 148

3.8.4 Real Data Experiment: Multiclass Logistic Regression 151

3.9 Conclusion . 155

4 Iterative Regularization with k-Support Norm. 156

4.1 Interlude: a Dual Perspective on Iterative Hard-Thresholding 156

4.2 Introduction . 159

4.3 Preliminaries . 160

4.4 The Algorithm . 164

4.5 Main Results . 165

4.5.1 Assumptions . 165

4.5.2 Discussion on the Assumptions . 165

4.5.3 Early Stopping Bound . 166

4.6 Proofs of the Main Results . 167

4.6.1 Notations and Definitions . 167

x

4.6.2 Recall on the Conditions for Recovery with ℓ1 Regularization 168

4.6.3 Proof of Theorem 10 . 169

4.6.4 Useful Results . 172

4.6.5 Proximal Operator of the k-support Norm 174

4.7 Illustrating Example . 174

4.8 Experiments . 177

4.8.1 Synthetic Example . 177

4.8.2 Path of IRKSN vs Lasso vs ElasticNet 179

4.8.3 fMRI Decoding . 179

4.8.4 Prediction on Real Data . 185

4.9 Conclusion . 189

References 190

xi

List of Tables

2.1 Complexity of sparsity-enforcing algorithms. 16

2.2 Comparison of universal adversarial attacks on n = 10 images from the
CIFAR-10 test-set, from the ’airplane’ class. 56

2.3 Datasets used in the comparison. 60

2.4 Comparison of universal adversarial attacks on n = 10 images from the
CIFAR-10 test-set, from the ’ship’ class. 62

2.5 Comparison of universal adversarial attacks on n = 10 images from the
CIFAR-10 test-set, from the ’bird’ class. 63

2.6 Comparison of universal adversarial attacks on n = 10 images from the
CIFAR-10 test-set, from the ’dog’ class. 64

3.1 Comparison of results for Iterative Hard Thresholding with/without addi-
tional constraints. 83

3.2 Number of samples (n) and dimension (d) of the training sets for the index
tracking experiment. 149

4.1 Comparison of the existing algorithms for sparse recovery in the literature. 161

4.2 Comparison of the algorithms on model estimation. 182

4.3 Datasets used in the comparison. 186

4.4 Test MSE of the methods of Table 4.1 on the leukemia and housing datasets.187

4.5 Test MSE of the methods of Table 4.1 on gene array datasets (scheetz2006
and rhee2006). 187

xii

List of Figures

1.1 Three-Point Lemma: convex vs. non-convex constraint. 6

1.2 Contractivity: convex vs. non-convex constraint. 7

1.3 Organization of the thesis. 12

2.1 Conflict between the hard-thresholding operator and the zeroth-order estimate. 21

2.2 ∇f(x) and ∇̂f(x) and their projections ∇Ff(x) and ∇̂Ff(x) onto F 45

2.3 ργ (y axis) as a function of k (x axis) for several values of q and k∗. 46

2.4 Dependence on the dimensionality of the query complexity. 48

2.5 Summary of results on adversarial attacks. 50

2.6 Sensitivity analysis. 51

2.7 f(x) vs. # queries (asset management). 51

2.8 f(x) vs. # queries (adversarial attack). 51

2.9 #IZO and #NHT on the ridge regression task. 55

2.10 #IZO and #NHT on the few pixels adv. attacks (CIFAR-10), for the original
class ’airplane’. 55

2.11 #IZO and #NHT on the ridge regression task, synthetic example (k=2). . 58

2.12 #IZO and #NHT on the ridge regression task, synthetic example (k=4). . 59

2.13 #IZO and #NHT on the ridge regression task, bodyfat dataset. 60

2.14 #IZO and #NHT on the ridge regression task, autoprice dataset. 61

2.15 #IZO and #NHT on the few pixels adversarial attacks task (CIFAR-10), for
the original class ’ship’. 61

2.16 #IZO and #NHT on the few pixels adversarial attacks task (CIFAR-10), for
the original class ’bird’. 62

2.17 #IZO and #NHT on the few pixels adversarial attacks task (CIFAR-10), for
the original class ’dog’. 63

3.1 Support-preserving set and two-step projection (d = 2, k = 1). 86

xiii

3.2 Illustration of Theorem 3 (i.e. Γ = Rd). 144

3.3 Illustration of Theorem 3 (with Γ an ℓ∞ ball of radius λ). 145

3.4 Comparison of TSP vs. Euclidean projection for several k. 147

3.5 Index tracking with sector constraints for various indices 150

3.6 Multiclass Logistic Regression with TSP, k = 50, D = 0.5 152

3.7 Multiclass Logistic Regression with TSP, k = 150, D = 0.5 152

3.8 Multiclass Logistic Regression with TSP, k = 50, D = 0.01 153

3.9 Multiclass Logistic Regression with TSP, k = 150, D = 0.01 153

3.10 Multiclass Logistic Regression: HZO-HT vs. ZOHT, k = 50 153

3.11 Multiclass Logistic Regression: HZO-HT vs. ZOHT, k = 100 154

3.12 Multiclass Logistic Regression: HZO-HT vs. ZOHT, k = 150 154

4.1 The half-squared top-k norm is not smooth. 157

4.2 Comparison of conditions for sparse recovery. 161

4.3 X(3), X(4) are correlated with X(0), X(1), X(2) 175

4.4 Comparison of the path of IRKSN with Lasso. w(y)
i is the i-th component of

w(y), and λ is the penalty of the Lasso. 176

4.5 Error and sparsity vs. number of iterations. 176

4.6 F1-score of support recovery in various settings. 178

4.7 Comparison of the path of IRKSN with Lasso and Elasticnet. 180

4.8 Comparison of different methods on an fMRI decoding task. 183

xiv

Chapter 1

Introduction

1.1 Motivations

In machine learning, ensuring sparsity of the learned model is essential for numerous
reasons such as computational (to reduce the size of the model and improve the speed and
memory cost of a model), or statistical (for instance for variable selection to potentially
increase the quality of predictions, or for model recovery or interpretability). The Iterative
Hard-Thresholding (IHT) [20] is a fundamental algorithm to achieve sparse learning, which
possesses several desirable properties. Indeed, it allows a practitioner to enforce a fixed
sparsity k for all the iterates of the algorithms (as well as the returned solution), without
requiring to tune any hyperparameter as is the case for instance with several methods such
as the Lasso [139]. However, so far, such an algorithm still leaves several open questions
which we seek to address in this thesis.

First, IHT is a (non-convex) projected gradient descent algorithm, and as such, requires
access to the gradient of the objective function. However, in some cases, such gradient may
be inaccessible, for computational reasons (it can be too costly to obtain, such as in certain
graphical modeling tasks [146]), or for privacy reasons (the objective function considered
may be computed partially on a private remote location, inaccessible to the optimizer,
which arises for instance when the dataset is private as in distributed learning [66,161], or
in black-box adversarial attacks when the model is private [95]). In such cases, one can
resort to zeroth-order methods, which only requires input and outputs of the considered
function. However, is the zeroth-order estimator of the gradient compatible with hard-
thresholding, and if so, how to tune the various parameters of such an algorithm to ensure
convergence ? Also, dependence on the dimension was shown to be unavoidable for strongly
convex and smooth zeroth-order optimization problems [77]: is it avoidable for zeroth-order
hard-thresholding algorithms (which are non-convex algorithms) ?

Additionally, zeroth-order algorithms in the convex and general non-convex case are
often combined with variance reduction techniques [68, 72, 79] when the function has a
finite-sum structure (as in empirical risk minimization in machine learning), in order
to obtain a fast convergence (similar to the one from full-batch optimization methods),

1

with the low computational cost of stochastic (mini-batch) methods. Can we apply such a
technique to the zeroth-order hard-thresholding algorithm above in order to make them more
applicable ? Furthermore, zeroth-order optimization is tightly related to evolution strategies
in reinforcement learning [129]. As such, it would be important to prove convergence
of zeroth-order hard-thresholding (ZOHT) in such a case, in order to use ZOHT for
reinforcement learning problems. However, in a reinforcement setting, the cost function is
usally discontinuous and non-convex. Therefore, can ZOHT converge in such non-convex
and discontinuous setting, and how to tune its parameters to ensure such convergence ?

Then, in several applications such as in portfolio optimization, one may require additional
constraints in addition to the sparsity constraints. Indeed, in such portfolio optimization
example, one may seek to enforce a total budget constraint on the investments, which can
be enforced through an extra ℓ1 constraint, as in [138]. As another example, in sparse
non-negative matrix factorization, when estimating the hidden components, one may seek to
enforce both a norm constraint and a sparsity constraint [73]. In the convex case, it is known
that the intersection of two convex sets is also convex, and as such, combining constraints
can easily be done as long as one can project onto the combined constraints: convergence
of the optimization procedure will then be ensured under standard convex optimization
assumptions. But in the non-convex sparse case, which algorithm can successfully ensure
both the sparse and the extra constraints ? Under which conditions will convergence be
ensured, in the deterministic, stochastic (first-order), and zeroth-order settings ?

Finally, IHT is known to suffer from restrictive applicability conditions: in the compressed
sensing and sparse recovery literature, such conditions are ensured by the Restricted Isometry
Property [33], which is known to be unrealistic in many high-dimensional optimization
settings [76]. Therefore, could we derive alternative algorithms than IHT, in particular
in the compressed sensing setting, which would ensure recovery under different, hence
complementary conditions ?

1.2 Background

In this section, we introduce the basic notions that will use in the thesis.

1.2.1 Convex Optimization

Although our work is mostly about hard-thresholding algorithms, which are non-convex
optimization algorithms as they optimize over a non-convex constraint (the ℓ0 pseudo-
ball), we will provide guarantees that are global (using the restricted strong convexity
and restricted smoothness assumption which we will define below), and deriving such
guarantees heavily build on tools and techniques from the convex optimization literature.
Below, we provide some usual definitions from the convex optimization literature, which are
the most common assumptions used to prove convergence of first-order and zeroth-order
methods, namely convexity, strong convexity and smoothness. For simplicity of exposition,
we consider such definitions in the case where f is differentiable, although the notions of

2

convexity and strong convexity can be defined even if f is not differentiable. These notions
can be found in [110].

Definition 1 (Convexity). A differentiable function f : Rd → R is said to be convex if for
all (x,y) ∈ (Rd)2:

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩. (1.1)

Such a property of functions is at the same time very commonly encountered in many
usual settings in machine learning, such as in linear regression and logistic regression, and
is also very powerful, as when f is convex, it is possible to prove the convergence of first
order (such as (sub)-gradient descent) methods to solve the following problem:

min
x∈Rd

f(x). (1.2)

Furthermore, under some additional assumptions, faster convergence of gradient descent
methods can be proven. We describe below such conditions:

Definition 2 (ν-strong convexity). A differentiable function f : Rd → R is said to be
ν-strongly convex if for all (x,y) ∈ (Rd)2:

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ ν

2
∥x− y∥2 (1.3)

Such a property ensures that the curvature of the function is bounded from below. This
is useful amongst other things to ensure that the minimum of f over Rd is unique, and to
prove fast convergence of first-order method. We now turn to another useful property of
functions, used in the field of convex optimization, but also in non-convex optimization:

Definition 3 (L-smoothness). A function f : Rd → R is said to be L-smooth, if it is
differentiable, and there exist a generic constant L such that for all (x,y) ∈ (Rd)2 :

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ (1.4)

Such a definition ensures that the function f is well-behaved enough, more precisely,
that the gradient does not change too abruptly. If one knows that f is convex, then an
alternative definition of smoothness is as follows:

Definition 4 (L-smoothness (alt.)). A convex function f : Rd → R is said to be L-smooth,
if it is differentiable, and there exist a generic constant L such that for all (x,y) ∈ (Rd)2 :

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ L

2
∥x− y∥2 (1.5)

3

1.2.2 Stochastic Optimization

In many cases, one actually does not directly observe f(x) for some x, but rather, one
observes a noisy version of x. One of such cases occurs for instance when f can be expressed
as an expectation over a random variable ξ, as below:

f(x) := Eξf(x, ξ) (1.6)

For simplicity, in such case we may denote fξ(x) := f(x, ξ) for all x ∈ Rd. In such a
case, one may needs some assumptions on the variance of the gradient, at a particular point
(usually the optimum of f , x∗):

Definition 5 (σ2-FGN [64], Assumption 2.3 (Finite Gradient Noise)). f is said to have
σ-finite gradient noise at x∗ if for almost any ξ, fξ is differentiable and the gradient noise
σ = σ(f, ξ) defined below is finite:

σ2 = Eξ[∥∇fξ(x∗)∥22] (1.7)

1.2.2.1 Finite-Sum Optimization

In machine learning, one often minimizes a function which can be expressed as an average
of n terms, which is also called Empirical Risk Minimization. More precisely, the function
f to be minimized can be expressed as follows, for all w ∈ Rd:

f(w) =
1

n

n∑
i=1

fi(w), (1.8)

where each fi(w) is often of the form g(w,xi, yi) for some function g (which is for
instance the logistic loss), and some samples x1, ...,xn and labels y1, ..., yn. Such case is
therefore a special case of the stochastic case above, where ξ is actually the random index
of each sample, which follows a uniform distribution with probability 1

n
for each index.

1.2.3 Zeroth-Order Optimization

In several settings, one actually cannot access the gradient∇f(x), for instance if the function
values are obtained through a long recurrent process which would make backpropagation
too costly [11,134], or if computing ∇R(w) is too expensive such as in certain graphical
modeling tasks [146], or if the dataset is private as in distributed learning [66,161], or if
the model is private as in black-box adversarial attacks [95]. In such a case, one can take
an existing first order method, but replace the gradient by an approximation of it, which
is based on the finite approximation of the gradient. Some review of such methods can
be found for instance in [18] and [93], a first introduction of such methods using gaussian
random smoothing can be found in [113], and a first appearance of such methods can be
found in [136]. In this paragraph, we present one of such methods, described for instance

4

in [57], which approximates the gradient using q random directions u1, ...,uq sampled
independently and uniformly at random along the unit sphere in Rd, and with the following
approximation of the gradient ∇̂f(x):

∇̂f(x) := d

q

q∑
i=1

f(x+ µui)− f(x)

µ
ui, (1.9)

where µ is a smoothing radius, which should be taken as small as possible, as much as is
allowed by the machine precision such that it will not introduce numerical errors. As will
be discussed in more details later, such an estimator of the gradient is actually biased, with
a bias growing with µ. Additionally, in order to reduce its variance, one may sample more
random directions q, and in this thesis we will study the impact of such choice of q in the
setting of hard-thresholding zeroth-order algorithms.

1.2.4 Constrained Convex Optimization

We now make a first step towards the main topic of this thesis, by now describing the
constrained convex optimization problem. The results in this section can be found in [110].
Constrained convex optimization problems can generally be formulated as follows:

min
x∈C

f(x), (1.10)

where C is a convex constraint set. We give below the definition of a convex set, which
essentially states that any point in between two points of the set must also belong to the
set:

Definition 6 (Convex Set). A set C ⊆ Rd is convex if, for all (x,y) ∈ C2, and for all
λ ∈ [0, 1]: λx+ (1− λ)y ∈ C.

Proofs in constrained convex optimization usually build on the following properties of
projection onto convex sets, where we denote by ΠC(x) the projection of x onto C.

1.2.4.1 Non-Expansivity and Three-Point Lemma

Lemma 1 (Non-expansivity).

∀(x,x∗) ∈ Rd × C : ∥x− x∗∥ ≥ ∥ΠC(x)− x∗∥ (1.11)

This property essentially states that when one projects onto C, one gets closer to any
given point x∗ ∈ C from the constraint. Actually, one can even be more precise on the
amount by which one gets closer to x∗, by using a stronger version of the non-expansivity
lemma. Such lemma is also sometimes called the three-point lemma when used in a general
Bregman divergence form to prove convergence of mirror descent for smooth functions

5

−1 1

−1

1

x

ΠC(x)

x∗

(a): Projection onto the ℓ1 unit ball.

−1 1

−1

1

x

ΠC(x)

x∗

(b): Projection onto the ℓ0 unit pseudo-
ball.

Figure 1.1: For projection onto the ℓ1 ball, we have ∥x− x∗∥2 ≥ ∥x− ΠC(x)∥2 +
∥ΠC(x)− x∗∥2 (three-point lemma), but this is not true if C is the ℓ0 pseudo-ball. In
that case, even the weaker non-expansivity property (∥x− x∗∥ ≥ ∥ΠC(x)− x∗∥) is not
verified in general.

in [27]. It is indeed sometimes necessary to use such lemma rather than the non-expansivity
of the hard-thresholding operator, in some specific proofs 1, and we present it below.

Lemma 2 (Convex Three-Point Lemma).

∀(x,x∗) ∈ Rd × C : ∥x− x∗∥2 ≥ ∥x− ΠC(x)∥2 + ∥ΠC(x)− x∗∥2 (1.12)

However, such two properties above are not verified if the set C is not convex, as
we illustrate on Figure 1.1, where we plot the projection operator onto the ℓ1 unit ball,
as well as the projection operator onto the ℓ0 pseudo-ball 2 of radius k, also known as
the hard-thresholding operator [108], which keeps the k-largest values (in magnitude) of
a given vector (if there are ties between components, one may break ties randomly or
based on lexicographical order of the component index). As we can observe in Figure 1.1
(b), the projection of x onto the ℓ0 unit ball is actually further away from x∗, hence the
non-expansivity is not verified (and consequently the three-point lemma is not verified
either). As we will discuss in Chapter 2 (resp. Chapter 3), it is however possible to keep
some of the techniques from convex optimization, and to replace the non-expansivity of
projection onto a convex set (resp. the convex three-point lemma), by a modified version
which is valid for projection onto the ℓ0 pseudo-ball.

1.2.4.2 Contractivity

We now turn to describe another property of projection, namely, the contractivity.
1In particular, the proof for constrained optimization in the smooth case, cf. Proof of The-

orem 3.4 here: https://raw.githubusercontent.com/epfml/OptML_course/master/lecture_notes/
lecture-notes.pdf.

2The ℓ0 pseudo-ball of radius k denotes the set C = {x ∈ Rd : ∥x∥0 ≤ k}, where ∥ · ∥0 is the ℓ0
pseudo-norm, denoting the number of non-zero components of a vector.

6

https://raw.githubusercontent.com/epfml/OptML_course/master/lecture_notes/lecture-notes.pdf.
https://raw.githubusercontent.com/epfml/OptML_course/master/lecture_notes/lecture-notes.pdf.

−1 1

−1

1
x1

x2

ΠC(x1)

ΠC(x2)

(a): Projection onto the ℓ1 unit ball.

−1 1

−1

1
x1

x2

ΠC(x1)

ΠC(x2)

(b): Projection onto the ℓ0 unit pseudo-
ball.

Figure 1.2: For projection onto the ℓ1 ball, we have ∥ΠC(x1)− ΠC(x2)∥ ≤ ∥x1 − x2∥
(contractivity), but this is not true if C is the ℓ0 pseudo-ball.

Lemma 3 (Contractivity of projection onto a convex set).

∀(x1,x2) ∈ (Rd)2 : ∥ΠC(x1)− ΠC(x2)∥ ≤ ∥x1 − x2∥ (1.13)

Such property essentially states that the distance between the projections of two points
is smaller than the original distance between those two points. We illustrate such a property
in Figure 1.2. As we can see there too, such a property is not verified for projection onto
the ℓ0 pseudo-ball (hard-thresholding operator). Such property can also be read as the
Lipschitz smoothness of a potential function, which gradient is the projection operator. As
such, it is also related to the strong convexity of the Fenchel dual of such potential, as we
will discuss in Section 4.1. We introduce the Fenchel dual in Section 1.2.6.3 below, and will
explore in more details this view of the projection operator as some gradient of a potential
function, by analyzing the Dual Averaging algorithm, and finding some ways to deal with
this departure from convex projection, in particular in Section 4.1.

1.2.5 Hard-Thresholding Algorithm

In this thesis, we consider mostly the following constrained optimization problem over the
ℓ0 pseudo-ball:

min
x s.t. ∥x∥0≤k

f(x) (1.14)

We now discuss the main algorithm which we consider in this thesis, which is the
hard-thresholding algorithm, and which goal is to solve the problem above (approximately,
since the problem above is NP-hard as we will discuss). An early appearance of such
algorithm can be found in [20]. It is a projected gradient descent algorithm, where the

7

projection is onto the ℓ0 pseudo-ball of radius k, which constitutes the hard-thresholding
operator denoted Hk below. It consists in keeping only the k largest components of a vector
(in absolute value), and setting all other components to 0. Note that if ties are present, any
method to break them (e.g. lexicographically) is admissible. We describe it below:

Algorithm 1: Hard-Thresholding
Initialization: x0

for t = 0, ..., T − 1 do
xt+1 := Hk(xt − η∇f(xt))

end
Output : x̂T := e.g. xT or argminx∈{xi}Ti=1

f(x)

As will be discussed later, in this thesis, we will consider proofs which provide approxi-
mate global guarantees of convergence to such a problem above. Therefore, we will need
some variants of the usual smoothness and strong convexity assumptions, which are tailored
to the structure of the problem.

Definition 7 ((νs, s)-RSC, [76,88,96,108,116,133,157]). f is said to be νs restricted strongly
convex with sparsity parameter s if it is differentiable, and there exist a generic constant νs
such that for all (x,y) ∈ Rd with ∥x− y∥0 ≤ s:

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ νs
2
∥x− y∥2 (1.15)

Definition 8 ((Ls, s)-RSS, [116,133]). A function f is said to be Ls restricted smooth with
sparsity level s, if it is differentiable, and there exist a generic constant Ls such that for all
(x,y) ∈ Rd with ∥x− y∥0 ≤ s:

∥∇f(x)−∇f(y)∥ ≤ Ls∥x− y∥ (1.16)

Essentially, such definitions are similar to the ones from convex optimization, except
that they only need to be enforced on a subset of the considered space.

1.2.6 Non-smooth Optimization

In Chapter 4, we will need some additional tools from non-smooth convex optimization,
which we introduce below. Such definitions can be found in [110] and [121].

1.2.6.1 Subgradient

Definition 9. Consider a convex function f : C ⊆ Rd → R. We say that g is a subgradient
of f at x, if for all y ∈ C :

f(y) ≥ f(x) + ⟨g,y − x⟩ (1.17)
The set of all subgradients of f at x is called the subdifferential of f at x and is denoted
∂f(x).

In other words, the notion of subgradient allows to define the notion of tangent plane(s)
to a curve of a function, even when the gradient is not defined at a particular point.

8

1.2.6.2 Proximal Operator

Another useful notion when dealing with non-smooth convex functions f is the notion of
proximal operator. Such an operator is also a generalization of the projection onto a convex
set, and is defined as follows:

Definition 10 (Proximal Operator). Given a function f : Rd → R, the proximal operator
of f at x ∈ Rd is defined by:

proxf (x) = inf
y
f(y) +

1

2
∥x− y∥2 (1.18)

One can see for instance that for a convex set C, denoting by 1C the indicator function

of that set (i.e. the function 1C : x→
{
0 if x ∈ C
+∞ otherwise

), the projection operator onto C

is actually the proximal operator of that indicator function, that is, we have:

prox1C
= ΠC (1.19)

1.2.6.3 Fenchel Duality

In Chapter 4, we will make use of the notion of Fenchel duality (also called convex duality).
Such notion leads, amongst other things, to powerful theorems, which allow to easily derive
closed form for several proximal operators or subgradient of functions for instance, using
known form for the Fenchel dual (also called convex dual) of such functions and for the
proximal operator or subgradient of such dual function, and using theorems relating the
proximal operator or subgradient of a function and its dual.

Definition 11 (Fenchel dual). Given a function f : Rd → R, the Fenchel dual of f , denoted
f ∗, is the following function, such that for all y ∈ Rd:

f ∗(y) = sup
x∈Rd

⟨x,y⟩ − f(x) (1.20)

1.3 Bibliographic Notes

Our thesis is based on the works described below (∗ denotes equal contribution):

• Zeroth-Order Hard-Thresholding: Gradient Error vs. Expansivity [46], by William de
Vazelhes, Hualin Zhang, Huimin Wu, Xiao-Tong Yuan, Bin Gu. Published in NeurIPS
2022. Included in Chapter 2.

• New Insight of Variance Reduce in Zero-Order Hard-Thresholding: Mitigating Gradient
Error and Expansivity Contradictions [159], by Xinzhe Yuan, William de Vazelhes,
Bin Gu, Huan Xiong. Published in ICLR 2023. Included in Chapter 2.

9

• Hard-Thresholding Meets Evolution Strategies in Reinforcement Learning, by Chengqian
Gao∗, William de Vazelhes∗, Hualin Zhang, Zhiqiang Qu, Bin Gu. Accepted at IJCAI
2024. Included in Chapter 2.

• Optimization over sparse restricted convex sets via two steps projection [45], by William
de Vazelhes, Xiaotong Yuan, Bin Gu. A preliminary version, had been submitted to
ICLR, and is available on OpenReview, and an updated version is currently under
review at COLT 2024. Included in Chapter 3.

• Iterative Regularization with k-support Norm: An Important Complement to Sparse
Recovery [44], by William de Vazelhes, Bhaskar Mukhoty, Xiao-Tong Yuan, Bin Gu.
Published in AAAI 2024. Included in Chapter 4.

1.4 Outline

In Chapter 2, we analyze our first algorithm, Zeroth-Order Hard-Thresholding (ZOHT),
which is an adaptation of the Iterative Hard Thresholding algorithm to the zeroth-order
case, i.e. where the true (stochastic) gradient is replaced by a zeroth-order approximation
of it. We analyze the conflict between the error of such a zeroth-order estimator on one
side, and the expansivity of the hard-thresholding operator on the other side, and analyze
how to tune the parameters of the algorithm (number of random directions q, sparsity
k and step-size η), in order to ensure convergence. Importantly, our results show that
under standard assumptions, the query complexity of ZOHT is dimension independent,
which is a very important property in the zeroth-order literature. Our results are based
on novel bounds on the error of the zeroth-order estimator restricted to a given sparse
support, which we obtain using properties of integrals on slices of spheres. Such result on
the support restricted error of the zeroth-order gradient estimator will also be at the core
of most of our results on zeroth-order hard-thresholding variants. Finally, we illustrate
the applicability of ZOHT on several use cases: a portfolio optimization task, as well as a
black-box adversarial attacks task. Then, in the last two sections of Chapter 2, we analyze
several variance reduction variants of ZOHT, such as the ones in [68,72,79,115], i.e. SVRG,
SAGA, SARAH, and q-SAGA. We analyze in particular the effect of variance reduction
on the previous conflict between zeroth-order and expansivity of the hard-thresholding
operator, and in particular how variance reduction allows to reduce stringent requirements
on the number of random directions of the zeroth-order estimator. We illustrate such
algorithms on several use cases including portfolio optimization and black-box adversarial
attacks. Then, we consider the original ZOHT algorithm, but in the case where the
function to be optimized is discontinuous (but bounded) and non-convex, as is the case in
general in reinforcement learning settings. We show that a carefully tuned zeroth-order
hard-thresholding is guaranteed to converge to a stationary point of the smoothed objective
in such case, and provide, up to our knowledge, the first explicit convergence rate for such
problem, using constants of the problem (which we believe are of independent interest for
the evolutionary strategies community in particular).

10

In Chapter 3, we consider a variant of IHT, using a two-step projection operator,
which can tackle extra convex constraints such that projection of a sparse vector onto them
is support preserving. We provide a global convergence guarantee in terms of function
value for such an algorithm (similar to existing global convergence guarantees for IHT,
i.e. for a relaxed sparsity level since the problem is NP-hard in general), which exhibit a
novel compromise between sub-optimality gap and sparsity relaxation specific to these new
constraints, and balanced in our bounds through a parameter ρ. To derive such results,
we develop, using tools from [90], a non-convex variant of the usual three-point lemma
classically used to prove convergence of projected gradient descent in the smooth and
convex setting. We first provide such a three-point lemma in a vanilla flavor to characterize
the behaviour of the hard-thresholding operator itself, which allows us as a byproduct
to significantly simplify existing proofs of convergence of IHT in the deterministic and
stochastic setting, and to come up with a novel zeroth-order hard-thresholding algorithm
with exponentially increasing random directions, which can get rid (as we prove thanks
to our new framework) of the system error of ZOHT. We also provide a variant of the
three-point lemma which incorporates the extra constraints, and which we use to obtain
the (first, up to our knowledge) global convergence guarantees in the setting with extra
constraints.

Finally, in Chapter 4, we consider an algorithm for sparse recovery which is inspired from
a dual perspective on IHT. More precisely, such an algorithm is an iterative regularization
algorithm following the framework from [99], but where the usual regularization based on
the ℓ1 norm is replaced by a regularizer based on the k-support norm. We provide sufficient
conditions for sparse recovery with such an algorithm, and show how they differ from, hence
are complementary from, the ones for recovery with ℓ1 norm. We obtain our results by
finding the corresponding first order conditions for recovery, through the derivation of the
subgradient of the (squared) top-k norm. We illustrate the applicability of our algorithm on
toy synthetic experiments as well as real-life experiments including an fMRI decoding task.

11

Chap. 2. ZOHT
Note: derivation of Prop. 1 for

Chap. 2.10. Variance Reduced ZOHT
Note: uses Prop. 1

Chap. 2.11. ES + HT

Chap. 3. HT + Extra Constraints
(Deterministic, Stochastic, ZO)

Note: uses Prop. 1

Chap. 4. IRKSN
(dual perspective on HT)

variance reduction
 generalizations

milder assumptions

extra constraints + simpler proofs
+ ZOHT without system error

Hard-Thresholding (HT)

Zeroth-Order (ZO)

RSS + RSC

Sparse RecoveryNonconvex + Discontinuous (Bounded)

Figure 1.3: Organization of the thesis. ES: Evolutionary Strategies, IRKSN: Iterative
Regularization with k-Support Norm.

12

1.5 Notations

Throughout this thesis, we will denote vectors in bold letters, and we will use the following
notations:

• ∇f(x) denotes the gradient of f at x.

• ui denotes the i-th coordinate of vector u, and ∇if(x) the i-th coordinate of ∇f(x).

• ∥ · ∥0 denotes the ℓ0 (pseudo-)norm (which is not a proper norm).

• ∥ · ∥ (or ∥ · ∥2) denote the ℓ2 norm.

• ∥ · ∥p denotes the ℓp norm for p ∈ [1,+∞).

• ∥ · ∥∞ denotes the maximum absolute component of a vector.

• x1, ..,xn
i.i.d∼ P denotes that we draw n i.i.d. samples x1, ..,xn from the distribution

P .

• Ex∼P (or simply Ex if there is no possible confusion) denotes the expectation of x
which follows the distribution P .

• [d] denotes the set of all integers between 1 and d: {1, .., d}.

• supp(x) denotes the support of a vector x, that is the set of its non-zero coordinates.

• |F | denotes the cardinality (number of elements) of a set F .

• F c denotes the complement of F in [d].

• Sd(R) (or Sd(R) for simplicity if R = 1) denotes the d-sphere of radius R, that is
Sd(R) = {u ∈ Rd : ∥u∥2 = R}.

• U(Sd) denotes the uniform distribution on that unit sphere.

• β(d) denotes the surface area of the unit d-sphere defined above.

• Sd
S denotes a set that we call the restricted d-sphere on S, described as: {uS : u ∈
{v ∈ Rd : ∥vS∥2 = 1}}, that is the set of unit vectors supported by S.

• U(Sd
S) denotes the uniform distribution on that restricted sphere above.

• uF (resp. ∇Ff(x)) denotes the hard-thresholding of u (resp. ∇f(x)) over the support
F , that is, a vector which keeps u (resp. ∇f(x)) untouched for the set of coordinates
in F , but sets all other coordinates to 0.

•
(
[d]
s

)
denotes the set of all subsets of [d] that contain s elements:

(
[d]
s

)
= {S : |S| =

s, S ⊆ [d]}.

13

• U(
(
[d]
s

)
) denotes the uniform distribution on the set above.

• I denotes the identity matrix Id×d.

• IS denotes the identity matrix with 1 on the diagonal only at indices belonging to
the support S: Ii,i = 1 if i ∈ S, and 0 elsewhere.

• S ∋ e denotes that set S contains the element e.

• {ui}ni=1 denotes the collection of elements u1, ..,un.

• Γ denotes the Gamma function [2].

•
∫
A
f(u)du denotes the integral of f over the set A.

• log denotes the natural logarithm (in base e).

• ΠΓ(w) denotes the Euclidean projection of w onto a set Γ, i.e. ΠΓ(w) ∈ argminz∈Γ ∥w−
z∥2.

• B0(k) denotes the ℓ0 pseudo-ball of radius k, i.e. B0(k) = {w ∈ Rd : ∥w∥0 ≤ k}.

• Hk denotes the Euclidean projection onto B0(k), also known as the hard-thresholding
operator (which keeps the k largest (in magnitude) components of a vector, and sets
the others to 0 (if there are ties, we can break them e.g. lexicographically)).

• Π̄k
Γ denotes the Two-step projection of sparsity k onto the set Γ, i.e. Π̄k

Γ(·) = ΠΓ(Hk(·)).

• |S| denotes the number of elements of a set S ⊆ [d] (cardinality).

14

Chapter 2

Zeroth-Order Hard-Thresholding

This chapter is based on the paper [46].

2.1 Introduction

ℓ0 constrained optimization is prevalent in machine learning, particularly for high-dimensional
problems, because it is a fundamental approach to achieve sparse learning. In addition
to improving the memory, computational and environmental footprint of the models,
these sparse constraints help reduce overfitting and obtain consistent statistical estima-
tion [28,109,125,158]. We formulate the problem as follows:

min
x∈Rd
{f(x) := Eξf(x, ξ)} , s.t. ∥x∥0 ≤ k (2.1)

where f(·, ξ) : Rd → R is a differentiable function and ξ is a noise term, for instance
related to an underlying finite sum structure in f , of the form: Eξf(x, ξ) =

1
n

∑n
i=1 fi(x).

Hard-thresholding gradient algorithm [76,116,157] is a dominant technique to solve this
problem. It generally consists in alternating between a gradient step, and a hard-thresholding
operation which only keeps the k-largest components (in absolute value) of the current
iterate. The advantage of hard-thresholding over its convex relaxations ([140, 143]) is
that it can often attain similar precision, but is more computationally efficient, since it
can directly ensure a desired sparsity level instead of tuning an ℓ1 penalty or constraint.
The only expensive computation in hard-thresholding is the hard-thresholding step itself,
which requires finding the top k elements of the current iterate. Hard-thresholding was
originally developed in its full gradient form [76], but has been later on extended to the
stochastic setting by [116], which developed a stochastic gradient descent (SGD) version
of hard thresholding (StoIHT), and further more with [163], [133] and [88], which used
variance reduction technique to improve upon StoIHT.

However, the first-order gradients used in the above methods may be either unavailable
or expensive to calculate in a lot of real-world problems. For example, in certain graphical

15

Table 2.1: Complexity of sparsity-enforcing algorithms. We give the query complexity for a
precision ε, up to the system error (see section 2.4). For first-order algorithms (FO), we
give it in terms of number of first order oracle calls (#IFO), that is, calls to ∇f(x, ξ), and
for ZO algorithms, in terms of calls of f(ξ, ·). Here κ denotes the condition number L

ν
, with

L is the smoothness (or RSS) constant and ν is the strong-convexity (or RSC) constant.

Type Name Assumptions #IZO/#IFO #HT ops.
FO/ℓ0 StoIHT [116] RSS, RSC O(κ log(1

ε
)) O(κ log(1

ε
))

ZO/ℓ1 RSPGF [59] smooth3 O(d
ε2
) —

ZO/ℓ1 ZSCG2[7] convex, smooth O(d
ε2
) —

ZO/ℓ1 ZORO [31]
s-sparse gradient,
weakly sparse hessian,
smooth3, RSCbis

1
O(s log(d) log(1

ε
)) —

ZO/ℓ0 SZOHT RSS, RSC O((k + d
s2
)κ2 log(1

ε
)) O(κ2 log(1

ε
))

ZO/ℓ0 SZOHT smooth, RSC O(kκ2 log(1
ε
)) O(κ2 log(1

ε
))

1 The definition of Restricted Strong Convexity from [31] is different from ours and that of [116],
hence the bis subscript.

2 We refer to the modified version of ZSCG (Algorithm 3 in [7]).
3 RSPGF and ZORO minimize f(x) + λ∥x∥1: only f needs to be smooth.

modeling tasks [146], obtaining the gradient of the objective function is computationally
hard. Even worse, in some settings, the gradient is inaccessible by nature, for instance
in bandit problems [132], black-box adversarial attacks [38, 39, 142], or reinforcement
learning [41, 98, 129]. To tackle those problems, ZO optimization methods have been
developed [114]. Those methods usually replace the inaccessible gradient by its finite
difference approximation which can be computed only from function evaluations, following
the idea that for a differentiable function f : R→ R, we have: f ′(x) = limh→0

f(x+h)−f(x)
h

.
Later on, ZO methods have been adapted to deal with a convex constraints set, and can
therefore be used to solve the ℓ1 convex relaxation of problem equation 2.1. To that
end, [59], and [31] introduce proximal ZO algorithms, [95] introduce a ZO projected gradient
algorithm and [7] introduce a ZO conditional gradient [86] algorithm. We provide a review
of those results in Table 2.1. As can be seen from the table, their query complexity is
high (linear in d), except [31] that has a complexity of O(s log(d) log(1

ε
)), but assumes that

gradients are sparse. In addition, those methods must introduce a hyperparameter λ (the
strength of the ℓ1 penalty) or R (the radius of the ℓ1 ball), which need to be tuned to find
which value ensures the right sparsity level. Therefore, it would be interesting to use the
hard-thresholding techniques described in the previous paragraph, instead of those convex
relaxations.

Unfortunately, ZO hard-thresholding gradient algorithms have not been exploited
formally. Even more, whether ZO gradients can work with the hard-thresholding operator
is still an unknown problem. Although there was one related algorithm proposed recently
by [7], they did not target ℓ0 constrained optimization problem and importantly have
strong assumptions in their convergence analysis. Indeed, they assume that the gradients,

16

as well as the solution of the unconstrained problem, are s-sparse: ∥∇f(x)∥0 ≤ s and
∥x∗∥0 ≤ s∗ ≈ s, where x∗ = argminx f(x). In addition, it was recently shown by [31] that
they must in fact assume that the support of the gradient is fixed for all x ∈ X , for their
convergence result to hold, which is a hard limitation, since that amounts to say that the
function f depends on s fixed variables.

To fill this gap, in this paper, we focus on the ℓ0 constrained black-box stochastic opti-
mization problems, and propose a novel stochastic zeroth-order gradient hard-thresholding
(SZOHT) algorithm. Specifically, we propose a dimension friendly ZO gradient estimator
powered by a novel random support sampling technique, and then embed it into the standard
hard-thresholding operator.

We then provide the convergence and complexity analysis of SZOHT under the standard
assumptions of sparse learning, which are restricted strong smoothness (RSS), and restricted
strong convexity (RSC) [116,133], to retain generality, therefore providing a positive answer
to the question of whether ZO gradients can work with the hard-thresholding operator.
Crucial to our analysis is to provide carefully tuned requirements on the parameters q
(the number of random directions used to estimate the gradient, further defined in Section
2.3.1) and k. Finally, we illustrate the utility of our method on a portfolio optimization
problem as well as black-box adversarial attacks, by showing that our method can achieve
competitive performance in comparison to state of the art methods for sparsity-enforcing
zeroth-order algorithm described in Table 2.1, such as [7, 31, 59].

Importantly, we also show that in the smooth case, the query complexity of SZOHT
is independent of the dimensionality, which is significantly different to the dimensionality
dependent results for most existing ZO algorithms. Indeed, it is known from [77] that the
worst case query complexity of ZO optimization over the class Fν,L of ν-strongly convex and
L-smooth functions defined over a convex set X is linear in d. Our work is thus in line with
other works achieving dimension-insensitive query complexity in zeroth-order optimization
such as [7, 30,31,31,61,77,91,135,149], but contrary to those, instead of making further
assumptions (i.e. restricting the class Fν,L to a smaller class), we bypass the impossibility
result by replacing the convex feasible set X by a non-convex set (the ℓ0 ball), which is
how we can avoid making stringent assumptions on the class of functions f .

Contributions. We summarize the main contributions of our paper as follows:

1. We propose a new algorithm SZOHT that is, up to our knowledge, the first zeroth-order
sparsity constrained algorithm that is dimension independent under the smoothness
assumption, without assuming any gradient sparsity.

2. We reveal an interesting conflict between the error from zeroth-order estimates and the
hard-thresholding operator, which results in a minimal value for the number of random
directions q that is necessary to ensure at each iteration.

3. We also provide the convergence analysis of our algorithm in the more general RSS
setting, providing, up to our knowledge, the first zeroth-order algorithm that can work
with the usual assumptions of RSS/RSC from the hard-thresholding literature.

17

2.2 Preliminaries

Throughout this paper, we denote by ∥x∥ the Euclidean norm for a vector x ∈ Rd, by
∥x∥∞ the maximum absolute component of that vector, and by ∥x∥0 the ℓ0 norm (which is
not a proper norm). For simplicity, we denote fξ(·) := f(·, ξ). We call uF (resp. ∇Ff(x))
the vector which sets all coordinates i ̸∈ F of u (resp. ∇f(x)) to 0. We also denote by x∗

the solution of problem equation 2.1 defined in the introduction, for some target sparsity k∗

which could be smaller than k. To derive our result, we will need the following assumptions
on f .

Assumption 1 ((νs, s)-RSC, [76, 88, 96, 108, 116, 133, 157]). f is said to be νs restricted
strongly convex with sparsity parameter s if it is differentiable, and there exist a generic
constant νs such that for all (x,y) ∈ Rd with ∥x− y∥0 ≤ s:

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ νs
2
∥x− y∥2 (2.2)

Assumption 2 ((Ls, s)-RSS, [116,133]). For almost any ξ, fξ is said to be Ls restricted
smooth with sparsity level s, if it is differentiable, and there exist a generic constant Ls

such that for all (x,y) ∈ Rd with ∥x− y∥0 ≤ s:

∥∇fξ(x)−∇fξ(y)∥ ≤ Ls∥x− y∥ (2.3)

Assumption 3 (σ2-FGN [64], Assumption 2.3 (Finite Gradient Noise)). f is said to
have σ-finite gradient noise if for almost any ξ, fξ is differentiable and the gradient noise
σ = σ(f, ξ) defined below is finite:

σ2 = Eξ[∥∇fξ(x∗)∥2∞] (2.4)

Remark 1. Even though the original version of [64] uses the ℓ2 norm, we use the ℓ∞ norm
here, in order to give more insightful results in terms of k and d, as is done classically in
ℓ0 optimization, similarly to [163]. We also note that in [64], x∗ denotes an unconstrained
minimum when in our case it denotes the constrained minimum for some sparsity k∗.

For Corollary 2, we will also need the more usual smoothness assumption:

Assumption 4 (L-smooth). For almost any ξ, fξ is said to be L smooth, if it is differen-
tiable, and for all (x,y) ∈ Rd :

∥∇fξ(x)−∇fξ(y)∥ ≤ L∥x− y∥ (2.5)

2.3 Algorithm

2.3.1 Random Support Zeroth-Order estimate

In this section, we describe our zeroth-order gradient estimator. It is basically composed of
a random support sampling step, followed by a random direction with uniform smoothing on

18

the sphere supported by this support. We also use the technique of averaging our estimator
over q dimensions, as described in [94]. More formally, our gradient estimator is described
below:

∇̂fξ(x) =
d

qµ

q∑
i=1

(fξ(x+ µui)− fξ(x))ui (2.6)

where each random direction ui is a unit vector sampled uniformly from the set Sd
s2

:= {u ∈
Rd : ∥u∥0 ≤ s2, ∥u∥ = 1}. We can obtain such vectors u by sampling first a random support
S (i.e. a set of coordinates) of size s2 from [d], (denoted as S ∼ U(

(
[d]
s2

)
) in Algorithm 2) and

then by sampling a random unit vector u supported on that support S, that is, uniformly
sampled from the set Sd

S := {u ∈ Rd : u[d]−S = 0, ∥u∥ = 1}, (denoted as u ∼ U(Sd
S) in

algorithm 2). The original uniform smoothing technique on the sphere is described in more
detail in [57]. However, in our case, the sphere along which we sample is restricted to
a random support of size s2. Our general estimator, through the setting of the variable
s2, can take several forms, which are similar to pre-existing gradient estimators from the
literature described below:

• If s2 = d, ∇̂fξ(x) is the usual vanilla estimator with uniform smoothing on the sphere [57].

• If 1 ≤ s2 ≤ d, our estimator is similar to the Random Block-Coordinate gradient
estimator from [89], except that the blocks are not fixed at initialization but chosen
randomly, and that we use a uniform smoothing with forward difference on the given block
instead of a coordinate-wise estimation with central difference. This random support
technique allows us to give a convergence analysis under the classical assumptions of the
hard-thresholding literature (see Remark 3), and to deal with huge scale optimization,
when sampling uniformly from a unit d-sphere is costly [30,31]: in the distributed setting
for instance, each worker would just need to sample an s2-sparse random vector, and
only the centralized server would materialize the full gradient approximation containing
up to qs2 non-zero entries.

Error Bounds of the Zeroth-Order Estimator. We now derive error bounds on
the gradient estimator, that will be useful in the convergence rate proof, except that we
consider only the restriction to some support F (that is, we consider a subset of components
of the gradient/estimator). Indeed, proofs in the hard-thresholding literature (see for
instance [157]), are usually written only on that support. That is the key idea which
explains how the dimensionality dependence is reduced when doing SZOHT compared to
vanilla ZO optimization. We give more insight on the shape of the original distribution of
gradient estimators, and the distribution of their projection onto a hyperplane F in Figure
2.2 in Section 2.6. We can observe that even if the original gradient estimator is poor, in
the projected space, the estimation error is reduced, which we quantify in the proposition
below.

Proposition 1. (Proof in Section 2.5.3) Let us consider any support F ⊂ [d] of size s
(|F | = s). For the Z0 gradient estimator in equation 2.6, with q random directions, and
random supports of size s2, and assuming that each fξ is (Ls2 , s2)-RSS, we have, with

19

∇̂Ffξ(x) denoting the hard thresholding of the gradient ∇fξ(x) on F (that is, we set all
coordinates not in F to 0):

(a) ∥E∇̂Ffξ(x)−∇Ffξ(x)∥2 ≤ εµµ
2

(b) E∥∇̂Ffξ(x)∥2 ≤ εF∥∇Ffξ(x)∥2 + εF c∥∇F cfξ(x)∥2 + εabsµ
2

(c) E∥∇̂Ffξ(x)−∇Ffξ(x)∥2 ≤ 2(εF + 1)∥∇Ffξ(x)∥2 + 2εF c∥∇F cfξ(x)∥2 + 2εabsµ
2

with εµ = L2
s2
sd, εF =

2d

q(s2 + 2)

(
(s− 1)(s2 − 1)

d− 1
+ 3

)
+ 2,

εF c =
2d

q(s2 + 2)

(
s(s2 − 1)

d− 1

)
and εabs =

2dL2
s2
ss2

q

(
(s− 1)(s2 − 1)

d− 1
+ 1

)
+ L2

s2
sd

(2.7)

2.3.2 SZOHT Algorithm

We now present our full algorithm to optimize problem 2.1, which we name SZOHT
(Stochastic Zeroth-Order Hard Thresholding). Each iteration of our algorithm is composed
of two steps: (i) the gradient estimation step, and (ii) the hard thresholding step, where the
gradient estimation step is the one described in the section above, and the hard-thresholding
is described in more detail in the following paragraph. We give the full formal description
of our algorithm in Algorithm 2.

In the hard thresholding step, we only keep the k largest (in magnitude) components
of the current iterate xt. This ensures that all our iterates (including the last one) are
k-sparse. This hard-thresholding operator has been studied for instance in [133], and
possesses several interesting properties. Firstly, it can be seen as a projection on the ℓ0
ball. Second, importantly, it is not non-expansive, contrary to other operators like the
soft-thresholding operator [133]. That expansivity plays an important role in the analysis
of our algorithm, as we will see later.

Compared to previous works, our algorithm can be seen as a variant of Stochastic
Hard Thresholding (StoIHT from [116]) , where we replaced the true gradient of fξ by
the estimator ∇̂fξ(x). It is also very close to Algorithm 5 from [7] (Truncated-ZSGD),
with just a different zeroth-order gradient estimator: we use a uniform smoothing, random-
block estimator, instead of their gaussian smoothing, full support vanilla estimator. This
allows us to deal with very large dimensionalities, in the order of millions, similarly to [30].
Furthermore, as described in the Introduction, contrary to [7], we provide the analysis of
our algorithm without any gradient sparsity assumption.

The key challenge arising in our analysis is described in Figure 2.1: the hard-thresholding
operator being expansive [133], each approximate gradient step must approach the solution
enough to stay close to it even after hard-thresholding. Therefore, it is a priori unclear

20

whether the zeroth-order estimate can be accurate enough to guarantee the convergence of
SZOHT. Hopefully, as we will see in the next section, we can indeed ensure convergence, as
long as we carefully choose the value of q.

Figure 2.1: Conflict between the hard-thresholding operator and the zeroth-order estimate.

Algorithm 2: Stochastic Zeroth-Order Hard-Thresholding (SZOHT)
Initialization: Learning rate η, maximum number of iterations T , size of the
random directions support s2, number of random directions q, number of
coordinates to keep at each iteration k = O(κ4k∗), initial point x(0) with
∥x(0)∥0 ≤ k∗ (typically x(0) = 0), .

Output :xT .
for t = 1, ..., T do

Sample ξ (for instance sample a train sample i)
for i = 1, ..., q do

Sample a random support S ∼ U(
(
[d]
s2

)
)

Sample a random direction ui from the unit sphere supported on S:
ui ∼ U

(
Sd
S

)
Compute ∇̂fξ(xt−1;ui) =

d
µ
(fξ(x+ µui)− fξ(x))ui;

end
Compute ∇̂fξ(xt−1) = 1

q

∑q
i=1 ∇̂fξ(xt−1;uj)

Compute x̃t = xt−1 − η∇̂fξ(xt−1);
Compute xt = x̃t

k as the truncation of x̃t with top k entries preserved;
end

2.4 Convergence analysis
In this section, we provide the convergence analysis of SZOHT, using the assumptions
from section 2.2, and discuss an interesting property of the combination of the zeroth-order
gradient estimate and the hard-thresholding operator, providing a positive answer to the
question from the previous section.

Theorem 1. (Proof in Section 2.5.4) Assume that that each fξ is (Ls′ , s
′ := max(s2, s))-RSS,

and that f is (νs, s)-RSC and σ-FGN, with s = 2k+k∗ ≤ d, with d−k∗

2
≥ k ≥ ρ2k∗/(1−ρ2)2,

with ρ defined as below. Suppose that we run SZOHT with random supports of size s2,

21

q random directions, a learning rate of η = νs
(4εF+1)L2

s′
, and k coordinates kept at each

iterations. Then, we have a geometric convergence rate, of the following form, with x(t)

denoting the t-iterate of SZOHT:

E∥x(t) − x∗∥ ≤ (γρ)t ∥x(0) − x∗∥+
(

γa

1− γρ

)
σ +

(
γb

1− γρ

)
µ (2.8)

with a = η
(√

(4εF s+ 2) + εF c(d− k) +
√
s
)
, b =

(√
εµ

Ls′
+ η
√
2εabs

)
,

ρ2 = 1− ν2
s

(4εF + 1)L2
s′
, and γ =

√
1 +

(
k∗/k +

√
(4 + k∗/k) k∗/k

)
/2

and εF , εabs, and εµ are defined in equation 2.7.

(2.9)

Remark 2 (System error). The format of our result is similar to the ones in [157] and [116],
in that it contains a linear convergence term, and a system error which depends on the
expected norm of the gradient at x∗ (through the variable σ). We note that if f has a
k∗-sparse unconstrained minimizer, which could happen in sparse reconstruction, or with
overparameterized deep networks (see for instance [124, Assumption (2)]), then we would
have ∥∇f(x∗)∥ = 0, and hence that part of the system error would vanish. In addition
to that usual system error, we also have here another system error, which depends on the
smoothing radius µ, due to the error from the ZO estimate.

Remark 3 (Generality). If we take s2 ≤ s, the first assumption of Theorem 1 becomes
the requirement that fξ is (Ls, s)-RSS. Therefore, SZOHT as well as the theorem above
provides, up to our knowledge, the first algorithm that can work in the usual setting of
hard-thresholding algorithms (that is, (Ls, s)-RSS and (νs, s)-RSC [116,133]), as well as its
convergence rate.

Interplay between hard-thresholding and zeroth-order error Importantly, con-
trary to previous works in ZO optimization, q must be chosen carefully here, due to our
specific setting combining ZO and hard-thresholding. Indeed, as described in [133], the
hard-thresholding operator is not non-expansive (contrary to projection onto the ℓ1 ball)
so it can drive the iterates away from the solution. Therefore, enough descent must be
made by the (approximate) gradient step to get close enough to the solution, and it is
therefore crucial to limit errors in gradient estimation. This problem arises with any kind of
gradient errors: for instance with SGD errors [116,163], it is generally dealt with either by
ensuring some conditions on the function f [116], forming bigger batches of samples [163],
and/or considering a larger number of components k kept in hard-thresholding (to make
the hard-thresholding less expansive). In our work, similarly to [163], we deal with this
problem by relaxing k and sampling more directions ui (which is the ZO equivalent to
taking bigger batch-size in SGD). However, there is an additional effect that happens in our
case, specific to ZO estimation: as described in Proposition 1, the quality of our estimator
also depends on k. Therefore, it may be hard to make the algorithm converge only by
considering larger k: higher k means less expansivity (which helps convergence), but worse
gradient estimate (which harms convergence). We further illustrate this conflict between

22

the non-expansiveness of hard-thresholding (quantified by the parameter γ [133]), and the
error from the zeroth-order estimate, in Figure 2.1. Therefore, it is even more crucial
to tune precisely our remaining degree of freedom at hand which is q. More precisely, a
minimal value of q is always necessary to ensure convergence in our setting, contrary to
most ZO setting (in which taking even q = 1 can work, as long as other constants like η
are well chosen, see for instance [92, Corollary 3]). The remark below gives some necessary
conditions on q to illustrate that fact.

Remark 4 (Some necessary condition on q, proof in 2.5.5). Let k∗ ∈ N∗ and assume, that
k is such that k > ρ2k∗/(1− ρ2)2 (which ensures that ργ < 1), and that k ≤ d−k∗

2
. These

conditions imply the following necessary (but not sufficient) condition on q:

• if s2 > 1: q ≥ 16d(s2−1)k∗κ2

(s2+2)(d−1)

[
18κ2 − 1 + 2

√
9κ2(9κ2 − 1) + 1

2
− 1

2k∗
+ 3

2
d−1

k∗(s2−1)

]
• if s2 = 1: q ≥ 8κ2d√

d
k∗+1

Remark 4 is just a warning that usual rules from ZO do not apply to SZOHT, but it
does not say how to choose q to ensure convergence: for that we would need some sufficient
conditions on q for Theorem 1 to apply. We give such conditions in the next section.

2.4.1 Weak/Non Dependence on Dimensionality of the Query Com-
plexity

In this section, we provide Corollaries 1 and 2, following from Theorem 1, which give an
example of q that is sufficient to converge (that is, to obtain γρ < 1 in Theorem 1), and
that achieves weak dimensionality dependence in the case of RSS, and complete dimension
independence in the case of smoothness.

Corollary 1 (RSS fξ, proof in Section 2.5.6). Assume that that almost all fξ are (Ls′ , s
′ :=

max(s2, s))-RSS, and that f is (νs, s)-RSC and σ-FGN, with s = 2k + k∗ ≤ d, with
d−k∗

2
≥ k ≥ (86κ4 − 12κ2)k∗ (with κ :=

Ls′
νs

) . Suppose that we run SZOHT with random
support of size s2, a learning rate of η = νs

13L2
s′
, with k coordinates kept at each iterations by

the hard-thresholding, and with q ≥ 2s+ 6 d
s2

. Then, we have a geometric convergence rate,
of the following form, with x(t) denoting the t-iterate of SZOHT:

E∥x(t) − x∗∥ ≤ (γρ)t ∥x(0) − x∗∥+
(

γa

1− γρ

)
σ +

(
γb

1− γρ

)
µ (2.10)

with a, b and γ are defined in equation 2.9, and ρ =
√

1− 2
13κ2 . Therefore, the query

complexity (QC) to ensure that E∥x(t) − x∗∥ ≤ ε +
(

γa
1−γρ

)
σ +

(
γb

1−γρ

)
µ is O(κ2(k +

d
s2
) log(1

ε
)).

23

We now turn to the case where the functions fξ are smooth. The key result in that case
is that we can have a query complexity independent of the dimension d, which is, up to
our knowledge, the first result of such kind for sparse zeroth-order optimization without
assuming any gradient sparsity.

Corollary 2 (Smooth fξ, proof in Section 2.5.7)). Assume that, in addition to the conditions
from Corollary 1 above, almost all fξ are L-smooth, with d−k∗

2
≥ k ≥ (86κ4 − 12κ2)k∗ (with

κ := L
νs

), and take q ≥ 2(s+ 2), and s2 = d (that is, no random support sampling). Then,
we have a geometric convergence rate, of the following form, with x(t) denoting the t-iterate
of SZOHT:

E∥x(t) − x∗∥ ≤ (γρ)t ∥x(0) − x∗∥+
(

γa

1− γρ

)
σ +

(
γb

1− γρ

)
µ (2.11)

Therefore, the QC to ensure that E∥x(t) − x∗∥ ≤ ε+
(

γa
1−γρ

)
σ +

(
γb

1−γρ

)
µ is O(κ2k log(1

ε
)).

Additionally, our convergence rate highlights an interesting connection between the
geometry of f (defined by the condition number κ = Ls′/νs), and the number of random
directions that we need to take at each iteration: if the problem is ill-conditioned, that is
κ is high, then we need a bigger k. This result is standard in the ℓ0 litterature (see for
instance [157]). But specifically, in our ZO case, it also impacts the query complexity: since
the projected gradient is harder to approximate when the dimension k of the projection
is larger, q needs to grow too, resulting in higher query complexity. We believe this is an
interesting result for the sparse zeroth-order optimization community: it reveals that the
query complexity may in fact depend on some notion of intrinsic dimension to the problem,
related to both the sparsity of the iterates k, and the geometry of the function f for a given
s2 (through the restricted condition number κ), rather than the dimension of the original
space d as in previous works like [59].

2.5 Proofs of the Main Results

2.5.1 Auxilliary Lemmas

Lemma 2.5.1 ([137] (10)). Let p ∈ Nd, and denote p :=
∑d

i=1 pi, we have:∫
Sd

d∏
i=1

(
u2

i

)pi du = 2

∏n
i=1 Γ(pi + 1/2)

Γ(p+ d/2)
(2.12)

Proof. The proof is given in [137].

Lemma 2.5.2. Let F be a subset of [d], of size s, with (s, d) ∈ N2
∗. We have the following:

Eu∼U(Sd)∥uF∥ ≤
√

s

d
(2.13)

24

Eu∼U(Sd)∥uF∥2 =
s

d
(2.14)

Eu∼U(Sd)∥uF∥4 =
(s+ 2)s

(d+ 2)d
(2.15)

Proof. We start by proving equation 2.14. Decomposing the norm onto every component,
we get:

Eu∼U(Sd)∥uF∥2 = Eu∼U(Sd)

∑
i∈F

u2
i =

∑
i∈F

Eu∼U(Sd)u
2
i (2.16)

By symmetry, each ui has the same marginal probability distribution, so:

∀i ∈ [d] : Eu∼U(Sd)u
2
i =

1

d

d∑
i=1

Eu∼U(Sd)u
2
i (2.17)

We also know, from the definition of the ℓ2 norm, and the fact that u is a unit vector, that:

d∑
i=1

Eu∼U(Sd)u
2
i = Eu∼U(Sd)

d∑
i=1

u2
i = Eu∼U(Sd)∥u∥2 = Eu∼U(Sd)1 = 1 (2.18)

Therefore, combining equation 2.17 and equation 2.18:

∀i ∈ [d] : Eu∼U(Sd)u
2
i =

1

d
(2.19)

Plugging this into equation 2.16, we get equation 2.14:

Eu∼U(Sd)∥uF∥2 =
s

d
(2.20)

Using Jensen’s inequality, equation 2.13 follows from equation 2.14. Let us now prove
equation 2.15. By definition of the expectation for a uniform distribution on the unit sphere:

Eu∼U(Sd)∥uF∥4 =
1

β(d)

∫
Sd

∥uF∥4du (2.21)

We further develop the integral as follows:∫
Sd

∥uF∥4du =

∫
Sd

(∥uF∥2)2du =

∫
Sd

(
∑
i∈F

u4
i +

∑
(i,j)∈F,j ̸=i

u2
iu

2
j)du

= s

∫
Sd

u4
1du+ 2

(
s

2

)∫
Sd

u2
1u

2
2du (by symmetry) (2.22)

Using Lemma 2.5.1 in the expression above, with p(a) := (2, 0, ..., 0), and p(b) := (1, 1, 0, ..., 0),
we obtain: ∫

Sd

∥uF∥4du = s

∏d
i=1 Γ(p

(a)
k + 1

2
)

Γ(2 + d/2)
+ 2

s(s− 1)

2
2

∏d
i=1 Γ(p

(b)
k + 1/2)

Γ(2 + d/2)

25

(a)
=

6s
√
π
d

(d+ 2)dΓ(d/2)
+

2s(s− 1)
√
π
d

(d+ 2)dΓ(d/2)
=

2(s+ 2)s
√
π
d

(d+ 2)dΓ(d/2)
(2.23)

Where in (a) we used the fact that Γ(1
2
) =
√
π and Γ(3

2
) =

√
π
2

. So:

Eu∼U(Sd)∥uF∥4 =
1

β(d)

∫
Sd

∥uF∥4du
(b)
=

s+ 2

d+ 2

s

d
(2.24)

Where (b) comes from the closed form for the area of a d unit sphere: β(d) = 2
√
π
d

Γ(d
2
)

Lemma 2.5.3 ([57], Lemma 7.3.b).

Eu∼U(Sd)uu
T =

1

d
I (2.25)

Proof. The proof is given in [57].

Lemma 2.5.4 ([133], Theorem 1; [157], Lemma 17). Let b ∈ Rd be an arbitrary d-
dimensional vector and a ∈ Rd be any k-sparse vector. Denote k̄ = ∥a∥0 ≤ k, and bk the
vector b with all the d − k smallest components set to 0 (that is, bk is the best k-sparse
approximation of b). Then, we have the following bound:

∥bk − a∥2 ≤ δ∥b− a∥2, δ = 1 +
β +

√
(4 + β)β

2
, β =

min{k̄, d− k}
k − k̄ +min{k̄, d− k}

Proof. The proof is given in [133].

Corollary 2.5.1. With the notations and variables above in Lemma 2.5.4, we also have
the following, simpler bound, from [157]:

∥bk − a∥ ≤ γ∥b− a∥ (2.26)

with

γ =

√
1 +

(
k̄/k +

√(
4 + k̄/k

)
k̄/k

)
/2 (2.27)

Proof. There are two possibilities for β in Lemma 2.5.4: either β = k̄
k

(if d − k > k̄) or
β = d−k

d−k̄
(if d− k ≤ k̄). In the latter case:

d−k ≤ k̄ =⇒ d−k̄ ≤ k =⇒ k − k̄

d− k̄
≥ k − k̄

k
=⇒ 1−k − k̄

d− k̄
≤ 1−k − k̄

k
=⇒ d− k

d− k̄
≤ k̄

k
(2.28)

Therefore, in both cases, β ≤ k̄
k
, which, plugging into Lemma 2.5.4, gives Corollary 2.5.1.

26

2.5.2 Proof of Proposition 1

With an abuse of notation, let us denote by f any function fξ for some given value of the
noise ξ. First, we derive in section 2.5.2.1 the error of the gradient estimate if we sample
only one direction (q = 1). Then, in section 2.5.2.2, we show how sampling q directions
reduces the error of the gradient estimator, producing the results of Proposition 1.

2.5.2.1 One Direction Estimator

Throughout all this section, we assume that q = 1 for the gradient estimator ∇̂f(x) defined
in equation 2.6.

Expected Deviation From The Mean.

Lemma 2.5.5. For any (Ls2 , s2)-RSS function f , using the gradient estimator ∇̂f(x)
defined in equation 2.6 with q = 1, we have, for any support F ∈ [d], with |F | = s:∥∥∥E [∇̂Ff(x)

]
−∇Ff(x)

∥∥∥2 ≤ εµµ
2 (2.29)

with εµ = L2
s2
sd

Proof. From the definition of the gradient estimator in equation 2.6:

∥E[∇̂Ff(x)]−∇Ff(x)∥ =
∥∥∥∥Edf(x+ µu)− f(x)

µ
uF −∇Ff(x)

∥∥∥∥ (2.30)

Now, (Ls2 , s2)-RSS implies continuous differentiability over an s2-sparse direction (since
(Ls2 , s2)-RSS actually equals Lipschitz continuity of the gradient over any s2-sparse set,
which implies continuity of the gradient over those sets). Therefore, from the mean value
theorem, , we have, for some c ∈ [0, µ]: f(x+µu)−f(x)

µ
= ⟨∇f(x+ cu),u⟩. We now use the

following result:

EuuT = ES∼ss2dEu∼U(Sd
S)
uuT (a)

= ES∼ss2d
1

s2
IS =

1

s2
ES∼ss2dIS

(b)
=

1

s2

s2
d
I =

1

d
I (2.31)

Where for (a) comes from applying Lemma 2.5.3 to the unit sub-sphere on the support
S, and (b) follows by observing that each diagonal element of index i actually follows a
Bernoulli distribution of parameter s2

d
, since there are

(
d−1
s2−1

)
arrangements of the support

which contain i, over
(
d
s2

)
total arrangements, which gives a probability p =

(d−1
s2−1)
(d
s2
)

=

(d−1)!s2!(d−s2)!
(s2−1)!(d−1−(s2−1))!d!

= s2
d

to get the value 1 at i.

This allows to factor the true gradient into the scalar product:

∥E[∇̂Ff(x)]−∇Ff(x)∥ = d∥E⟨∇f(x+ cu)−∇f(x),u⟩uF∥

27

≤ dE∥uFu
T [∇f(x+ cu)−∇f(x)]∥ (2.32)

where the last inequality follows from the property E∥X − EX∥2 = E∥X∥2 − ∥EX∥2,
which implies ∥EX∥ =

√
E∥X∥2 − E∥(X − EX)∥2 ≤ E∥X∥, for any multidimensional

random variable X. Using the Cauchy-Schwarz inequality, we obtain:

∥E[∇̂Ff(x)]−∇Ff(x)∥ ≤ ES∼ss2dEu∼U(Sd
S)
∥uF∥∥u∥∥∇Sf(x+ cu)−∇Sf(x)∥ (2.33)

Since f ∈ (Ls2 , s2)-RSS and ∥us∥0 ≤ s2, we have: ∥∇Sf(x + cu) −∇Sf(x)∥ ≤ Ls2∥cu∥.
We also have c ∈ [0, µ], which implies ∥cu∥ ≤ µ∥u∥. Therefore:

∥E[∇̂Ff(x)]−∇Ff(x)∥ ≤ ESEudLs2µ∥uF∥∥u∥∥u∥ = ESEudLs2µ∥uF∥∥u∥2

= ESEudLs2µ∥uF∥
(a)

≤ dLs2µESEu

√
|S ∩ F |

s2

(b)

≤ dLs2µ

√
ES
|S ∩ F |

s2
= dLs2µ

√
EkES||S∩F |=k

k

s2

= dLs2µ

√
ss2
ds2

= Ls2µ
√
sd (2.34)

Where (a) follows from Lemma 2.5.2, restricted to the support S, and (b)

Expected Norm.

Lemma 2.5.6. For any (Ls2 , s2)-RSS function f , using the gradient estimator ∇̂f(x)
defined in equation 2.6 with q = 1, we have, for any support F ∈ [d], with |F | = s:

E∥∇̂Ff(x)∥2 = εF∥∇Ff(x)∥2 + εF c∥∇F cf(x)∥2 + εabsµ
2 (2.35)

with:
(i) εF = 2d

(s2+2)

(
(s−1)(s2−1)

d−1
+ 3
)

(ii) εF c = 2d
(s2+2)

(
s(s2−1)
d−1

)
(iii) εabs = 2dL2

sss2

(
(s−1)(s2−1)

d−1
+ 1
)

Proof.

E∥∇̂Ff(x)∥2 = E
∥∥∥∥df(x+ µu)− f(x)

µ
uF

∥∥∥∥2
= E

d2

µ2
|f(x+ µu)− f(x)|2∥uF∥2

=
d2

µ2
E[f(x+ µu)− f(x)− ⟨∇f(x), µu⟩+ ⟨∇f(x), µu)]2∥uF∥2 (2.36)

28

Using the mean value theorem, we obtain that for a certain c ∈ (0, µ), we have:

f(x+ µu)− f(x) = ⟨∇f(x+ c), µu⟩ (2.37)

Therefore, plugging this in the above:

E∥∇̂Ff(x)∥2 ≤ d2E[⟨∇f(x+ cu)−∇f(x),u⟩+ ⟨∇f(x),u⟩]2∥uF∥2
(a)

≤ d2E
[
2⟨∇f(x+ cu)−∇f(x),u⟩2∥uF∥2 + ⟨∇f(x),u⟩2∥uF∥2

]
≤ 2d2E[∥∇f(x+ cu)−∇f(x)∥2∥u∥2∥uF∥2 + ⟨∇f(x),u⟩2∥uF∥2]
≤
(b)2d2E[L2

sµ
2∥u∥2∥u∥2∥uF∥2 + ⟨∇f(x),u⟩2∥uF∥2]

(c)
= 2d2E[L2

sµ
2∥uF∥2 + ⟨∇f(x),u⟩2∥uF∥2]

= 2d2[L2
sµ

2E∥uF∥2 +∇f(x)T
(
EuuT∥uF∥2

)
∇f(x)]

= 2d2[L2
s2
µ2E∥uF∥2 +∇f(x)T (ES∼ss2dEu∼U(Sd

S)
uuT∥uF∥2)∇f(x)]

(d)
= 2d2[L2

s2
µ2E∥uF∥2 + ES∼ss2d[∇f(x)T (Eu∼U(Sd

S)
uuT∥uF∥2)∇f(x)]] (2.38)

Where (a) follows from the fact that for any (a, b) ∈ R2 : (a+b)2 ≤ 2a2+2b2, (b) follows from
the Cauchy-Schwarz inequality, (c) follows from the fact that ∥u∥ = 1 since u ∈ Sd

S, and
(d) follows by linearity of expectation. Let us turn to computing the following expression
above: Eu∼U(Sd

S)
uuT∥uF∥2. We start by distinguishing the indices that belong to F and

those that do not. By symmetry, denoting i1, ..., is the elements of F :

Eu∼U(Sd
S)
u2

i1
∥uF∥2 = ... = Eu∼U(Sd

S)
u2

is∥uF∥2 (2.39)

Therefore, for all i ∈ F :

Eu∼U(Sd
S)
u2

i ∥uF∥2 =
1

|S ∩ F |
s∑

j=1

Eu∼U(Sd
S)
u2

ij
∥uF∥2

=
1

|S ∩ F |Eu∼U(Sd
S)

s∑
j=1

u2
ij
∥uF∥2 =

1

|S ∩ F |Eu∼U(Sd
S)
∥uF∥4 (2.40)

By definition of the restricted d-sphere on F (see section 4.6.1), for all u ∈ Sd
S, if i ̸∈ S:

ui = 0. Therefore, since the exact indices of the elements of F do not matter in the
expected value equation 2.40, but only their cardinality, equation 2.40 can be rewritten
using a simpler expectation over a unit |S|-sphere as follows :

Eu∼U(Sd
S)
∥uF∥4 = Eu∼U(S|S|)∥u[|S∩F |]∥4 (2.41)

Using Lemma 2.5.2 to get a closed form expression of the expected value above, we further
obtain:

∀i ∈ F : Eu∼U(Sd)u
2
i ∥uF∥2 =

1

|S ∩ F |
|S ∩ F |(|S ∩ F |+ 2)

d(d+ 2)
=
|S ∩ F |+ 2

d(d+ 2)
(2.42)

29

Similarly, by symmetry, denoting i1, ..., id−s the elements of F c:

Eu∼U(Sd
S)
u2

ij
∥uF∥2 = ... = Eu∼U(Sd

S)
u2

ij
∥uF∥2 (2.43)

Therefore, for all i ̸∈ F :

Eu∼U(Sd
S)
u2

i ∥uF∥2 =
1

d− s

d−s∑
j=1

Eu∼U(Sd
S)
u2

ij
∥uF∥2 =

1

d− s
Eu∼U(Sd

S)

d−s∑
j=1

u2
ij
∥uF∥2

(a)
=

1

d− s
Eu∼U(Sd

S)
(∥u∥2 − ∥uF∥2)∥uF∥2

(b)
=

1

d− s
(Eu∼U(Sd

S)
∥uF∥2 − Eu∼U(Sd

S)
∥u∥4) (2.44)

Where (a) follows from the Pythagorean theorem and (b) follows from ∥u∥ = 1. Similarly
as before, rewriting those expected values and using Lemma 2.5.2, we obtain:

∀i ̸∈ F : Eu∼U(Sd)u
2
i ∥uF∥2 =

1

d− |S ∩ F |
|S ∩ F |(d+ 2− (|S ∩ F |+ 2))

d(d+ 2)
=
|S ∩ F |
d(d+ 2)

(2.45)
Finally, by symmetry of the distribution U(Sd

S), we have, for all (i, j) ∈ [d]2 with i ̸= j:

Eu∼U(Sd
S)
uiuj∥uF∥2 = Eu∼U(Sd

S)
(−ui)uj∥uF∥2 = −Eu∼U(Sd

S)
uiuj∥uF∥2 (2.46)

Therefore, for all (i, j) ∈ [d]2, i ̸= j:

Eu∼U(Sd
S)
uiuj∥uF∥2 = 0 (2.47)

Therefore, combining equation 2.42, equation 2.45 and equation 2.47, we obtain:

Eu∼U(Sd
S)
uuT∥uF∥2 =

a1

a2
. . .

ad

 (2.48)

With, for all i ∈ [d] : ai =

{
|S∩F |+2
d(d+2)

if i ∈ F
|S∩F |
d(d+2)

if i ̸∈ F
. Plugging this back into equation 2.38, we

obtain:

A := ES∼ss2d[∇f(x)T
(
Eu∼U(Sd

S)
uuT∥uF∥2

)
∇f(x)]

= ES∼ss2d

[|S ∩ F |+ 2

s2(s2 + 2)
∥∇S∩Ff(x)∥2 +

|S ∩ F |
s2(s2 + 2)

∥∇S\(S∩F)f(x)∥2
]

=
1

s2(s2 + 2)

[
ES∼ss2d

[
|S ∩ F | ∥∇F∩Sf(x)∥2

]
+2ES∼ss2d

[
∥∇F∩Sf(x)∥2 + |S ∩ F | ∥∇S\(S∩F)f(x)∥2

]]
(2.49)

30

We will now develop the expected values above using the law of total expectation, to exhibit
the role of the random variable k denoting the size of S ∩ F . Given that we sample s2
indices from [d] without replacement, k follows a hypergeometric distribution with, as
parameters, population size d, number of success states s and number of draws s2, which
we denote H(d, s, s2). For simplicity, we will use the following notations for the expected
values: Ek[·] := Ek∼H(d,s,s2)[·], and ES||S∩F |=k[·] = ES∼ss2d||S∩F |=k[·]. Therefore, rewriting
equation 2.49 using the law of total expectation, we obtain:

A =
1

s2(s2 + 2)

[
EkES||S∩F |=kk∥∇S∩Ff(x)∥2 + 2EkES||S∩F |=k∥∇S∩Ff(x)∥2

+EkES||S∩F |=kk∥∇S\(S∩F)f(x)∥2
]

=
1

s2(s2 + 2)

[
EkkES||S∩F |=k∥∇S∩Ff(x)∥2 + 2ESES||S∩F |=k∥∇S∩Ff(x)∥2

+EkkES||S∩F |=k∥∇S\(S∩F)f(x)∥2
]

(2.50)

To compute the conditional expectations above, let us consider the first of them (the other
ones will follow similarly) : ES||S∩F |=k∥∇S∩Ff(x)∥2. Given some k, from the multiplication
principle in combinatorics, we can have

(
d
k

)(
d−s
s2−k

)
arrangements of supports such that k

elements of that support are in F (because it means there are k elements in F and s2 − k
elements outside of F). So the conditional probability of each of those supports S, assuming

they indeed have at least one element in common with F , is
((

d
k

)(
d−s
s2−k

))−1

. Otherwise it is
0. To rewrite it:

P (S||S ∩ F | = k) =

((

d
k

)(
d−s
s2−k

))−1

if S ∩ F ̸= ∅
0 if S ∩ F ̸= ∅

So, developing ES||S∩F |=k∥∇S∩Ff(x)∥2 using the definition of conditional probability, we
have:

ES||S∩F |=k∥∇S∩Ff(x)∥2 =
∑
S

P (S| |S ∩ F | = k)
∑

i∈S∩F

∇if(x)
2

=
∑

S/|S∩F |=k

((
d

k

)(
d− s

s2 − k

))−1 ∑
i∈S∩F

∇if(x)
2

=

((
d

k

)(
d− s

s2 − k

))−1 ∑
S/|S∩F |=k

∑
i∈S∩F

∇if(x)
2

(a)
=

((
d

k

)(
d− s

s2 − k

))−1∑
i∈F

∑
S/((|S∩F |=k),(S∋i))

∇if(x)
2

(b)
=

((
d

k

)(
d− s

s2 − k

))−1∑
i∈F

(
s− 1

k − 1

)(
d− s

s2 − k

)
∇if(x)

2

=
s

k

∑
i∈F

∇if(x)
2

31

=
s

k
∥∇Ff(x)∥2 (2.51)

Where (a) follows by re-arranging the sum, and (b) follows by observing that by the
multiplication principle, there are

(
s−1
k−1

)(
d−s
s2−k

)
possible arrangements of support such that:

(|S ∩F | = k), (S ∋ i), since one element of S is already fixed to be i, so there remains k− 1
indices to arrange over s − 1 possibilities, and still s2 − k indices to arrange over d − s
possibilities. Similarly, to equation 2.51 we have, for the second expectation:

ES||S∩F |=k∥∇S\(S∩F)f(x)∥2 =
s2 − k

d− s
∥∇F cf(x)∥2 (2.52)

Therefore, plugging equation 2.51 and equation 2.52 into equation 2.50

A =
1

s2(s2 + 2)

[
Ekk

k

s
∥∇Ff(x)∥2 + 2Ek

k

s
∥∇Ff(x)∥2 + Ekk

s2 − k

d− s
∥∇F cf(x)∥2

]
=

1

s2(s2 + 2)

[
1

s
∥∇Ff(x)∥2

[
Ekk

2 + 2Ekk
]
+ ∥∇F cf(x)∥2

[
s2

d− s
(Ekk)−

1

d− s
Ekk

2

]]
(2.53)

Since k follows a hypergeometric distribution H(d, s, s2), its expected value is given in
closed form by: Ekk = ss2

d
(see [147], section 2.1.3). We can also express the non-centered

moment of order 2, using the formula for Var(X) = E[X2] − (E[X])2, which holds for a
random variable X, where V ar(X) denotes the variance of X:

Ekk
2 = V ar(k) + (Ek[k])

2 (a)
=

ss2
d

d− s

d

d− s2
d− 1

+
(ss2

d

)2
=

ss2
d

(
d− s

d

d− s2
d− 1

+
ss2
d

)
=

ss2
d

(
d2 − sd− s2d+ ss2 + ss2d− ss2

d(d− 1)

)
=

ss2
d

(
d− s− s2 + ss2

d− 1

)
=

ss2
d

(
(s− 1)(s2 − 1)

d− 1
+ 1

)
(2.54)

Where (a) follows by the closed form for the variance of a hypergeometric variable given
in [147]. Therefore, plugging in into equation 2.53:

ES∇f(x)T
(
EUS |Suu

T∥uF∥2
)
∇f(x)

=
1

s2(s2 + 2)

[
1

s
∥∇Ff(x)∥2

[
ss2
d

(
(s− 1)(s2 − 1)

d− 1
+ 1

)
+ 2

ss2
d

]]
+

1

s2(s2 + 2)
∥∇F cf(x)∥2

[
s2

d− s

ss2
d
− 1

d− s

ss2
d

(
(s− 1)(s2 − 1)

d− 1
+ 1

)]
=

1

s2 + 2

[
∥∇Ff(x)∥2

[
1

d

(
(s− 1)(s2 − 1)

d− 1
+ 3

)]
+ ∥∇F cf(x)∥2

[
s

(d− s)d

(
s2 −

(
(s− 1)(s2 − 1)

d− 1
+ 1

))]]
=

1

d(s2 + 2)

[
∥∇Ff(x)∥2

[(
(s− 1)(s2 − 1)

d− 1
+ 3

)]
32

+∥∇F cf(x)∥2
[

s

(d− s)

(
s2 −

(
(s− 1)(s2 − 1)

d− 1
+ 1

))]]
(2.55)

Let us simplify the rightmost term:

s

(d− s)

(
s2 −

(
(s− 1)(s2 − 1)

d− 1
+ 1

))
=

s(s2 − 1)

d− s

[
1− s− 1

d− 1

]
=

s(s2 − 1)

(d− s)

[
d− s

d− 1

]
=

s(s2 − 1)

d− 1
(2.56)

Plugging it back into equation 2.55:

ES∇f(x)T
(
EUS |Suu

T∥uF∥2
)
∇f(x)

=
1

d(s2 + 2)

[
∥∇Ff(x)∥2

(
(s− 1)(s2 − 1)

d− 1
+ 3

)
+ ∥∇F cf(x)∥2

(
s(s2 − 1)

d− 1

)]
(2.57)

Finally, plugging this back into equation 2.38:

E∥∇̂Ff(x)∥2 = 2d2
[
L2
s2
µ2E∥uF∥2 +∇f(x)T

(
EuuT∥uF∥2

)
∇f(x)

]
= 2d2

[
L2
s2
µ2EkEu||S∩F |=k∥uF∥2 +∇f(x)T

(
EuuT∥uF∥2

)
∇f(x)

]
= 2d2

[
L2
s2
µ2Ekk

2 +∇f(x)T
(
EuuT∥uF∥2

)
∇f(x)

]
= d2L2

s2
µ2ss2

(
(s− 1)(s2 − 1)

d− 1
+ 1

)
+

2d

(s2 + 2)

[
∥∇Ff(x)∥2

(
(s− 1)(s2 − 1)

d− 1
+ 3

)
+ ∥∇F cf(x)∥2

(
s(s2 − 1)

d− 1

)]
(2.58)

2.5.2.2 Batched Version of the One-Direction Estimator

We now describe how sampling q ≥ 1 random directions improves the gradient estimate.
Our proof is similar to the proof of Lemma 2 in [95], however we make sure that it works
for our random support gradient estimator, and with our new expression in 2.5.6, which
depends on the two terms ∥∇Ff(x)∥2 and ∥∇F cf(x)∥2. We express our results here in the
form of a general lemma, depending only on the general bounding factors εF , εF c , εabs and
εµ defined below, in such a way that the proof of Proposition 1 follows immediately from
plugging the results of Lemma 2.5.5 and 2.5.6 into Lemma 2.5.7 below.

Lemma 2.5.7. For any (Ls2 , s2)-RSS function f , we use the gradient estimator ∇̂f(x)
defined in equation 2.6 with q ≥ 1. Let us suppose that the estimator ∇̂f(x) is such that for
q = 1, it verifies the following bounds for some εF , εF c, εabs and εµ in R∗

+, for any support

33

F ∈ [d], with |F | = s:
(i) ∥E∇̂Ff(x)−∇Ff(x)∥2 ≤ εµµ

2, and
(ii) ∥E∇̂Ff(x)∥2 ≤ εF∥∇Ff(x)∥2 + εF c∥∇F cf(x)∥2 + εabsµ

2

Then, the estimator ∇̂f(x) also verifies, for arbitrary q ≥ 1 :
(a) ∥E∇̂Ff(x)−∇Ff(x)∥2 ≤ εµµ

2

(b) E
∥∥∥∇̂Ff(x)

∥∥∥2 ≤ (εF
q
+ 2
)
∥∇Ff(x)∥2 + εFc

q
∥∇F cf(x)∥2 +

(
εabs
q

+ 2εµ

)
µ2

Proof. Let us denote by ∇̂f(x; (ui)
q
i=1) the gradient estimate from equation 2.6 along the

i.i.d. sampled directions (ui)
q
i=1 (we simplify it into ∇̂f(x;u) if there is only one direction

u). We can first see that, since the random directions ui are independent identically
distributed (i.i.d.) we have:

E∇̂f(x; (ui)
q
i=1) = E

1

q

q∑
i=1

∇̂f(x;ui) =
1

q

q∑
i=1

E∇̂f(x;u1) = E∇̂f(x;u1) (2.59)

This proves 2.5.7 (a). Let us now turn to 2.5.7 (b). We have:

E
[∥∥∥∇̂Ff(x; (ui)

q
i=1)
∥∥∥2] = E

∥∥∥∥∥1q
q∑

i=1

∇̂Ff(x;ui)

∥∥∥∥∥
2

=
1

q2
E

(
q∑

i=1

∇̂Ff(x;ui)

)⊤(q∑
i=1

∇̂Ff(x;ui)

)

=
1

q2

q∑
i=1

q∑
j=1

E
[
∇̂Ff(x;ui)

⊤∇̂Ff(x;uj)
]

(a)
=

1

q2

qE∥∇̂Ff(x;u1)∥2 +
q∑

i=1

q∑
j=1(j ̸=i)

(E∇̂Ff(x;ui))
⊤(E∇̂Ff(x;uj))

=

1

q2

[
qE||∇̂Ff(x;u1)∥2 + q(q − 1)∥E∇̂Ff(x;u1)||2

]
(b)

≤ 1

q2

[
q
[
εF∥∇Ff(x)∥2 + εF c∥∇F cf(x)∥2 + εabsµ

2
]
+ q (q − 1)

∥∥∥E∇̂Ff(x;u1)
∥∥∥2]
(2.60)

Where (a) comes from the fact that the random directions are i.i.d. and (b) comes from
assumptions (i) and (ii) of the current Lemma (Lemma 2.5.7). Assumption (ii) also allows
to bound the last term above in the following way:

∥E∇̂Ff(x;u1)∥2 ≤ 2∥∇Ff(x;u1)− E∇̂Ff(x;u1)∥2 + 2∥∇Ff(x;u1)∥2
≤ 2εµµ

2 + 2∥∇Ff(x;u1)∥2 (2.61)

Plugging equation 2.61 into equation 2.60, we obtain:

E
[∥∥∥∇̂Ff(x)

∥∥∥2] ≤ 1

q
[εF + 2(q − 1)] ∥∇Ff(x)∥2 +

εF c

q
∥∇F cf(x)∥2

34

+
1

q

[
εabsµ

2 + 2 (q − 1) εµµ
2
]

≤
(
εF
q

+ 2

)
∥∇Ff(x)∥2 +

εF c

q
∥∇F cf(x)∥2 +

(
εabs
q

+ 2εµ

)
µ2 (2.62)

2.5.3 Proof of Proposition 1

Proof. Proposition 1 (a) and (b) follow by plugging the values of εF , εF c , εabs and εµ
from Lemma 2.5.5 and Lemma 2.5.6 into Lemma 2.5.7. Proposition (c) follows from the
inequality ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2, for a and b in Rp with p ∈ N∗.

2.5.4 Proof of Theorem 1

Proof. We will combine the proof from [157] and [114], using ideas of the proof of Theorem
8 from Nesterov to deal with zeroth order gradient approximations, and ideas from the proof
of [157] (Theorem 2 and 5, Lemma 19), to deal with the hard thresholding operation in the
convergence rate. Let us call η an arbitrary learning rate, that will be fixed later in the proof.
Let us call F the following support F = F (t−1) ∪F (t) ∪ supp(x∗), with F (t) = supp(xt). We
have, for a given random direction u and function noise ξ, at a given timestep t of SZOHT:

∥xt − x∗ − η∇̂Ffξ(x
t) + η∇Ffξ(x

∗)∥2 = ∥xt − x∗∥2 − 2η⟨xt − x∗, ∇̂Ffξ(x
t)−∇Ffξ(x

∗)⟩
+ η2∥∇̂Ffξ(x

t)−∇Ffξ(x
∗)∥2 (2.63)

Taking the expectation with respect to ξ and to the possible random directions u1, ...,uq

(that we denote with a simple u, abusing notations) at step t, we get:

Eξ,u∥xt − x∗ − η∇̂Ffξ(x
t) + η∇Ffξ(x

∗)∥2

= ∥xt − x∗∥2 − 2η⟨xt − x∗,Eξ,u[∇̂Ffξ(x
t)−∇Ffξ(x

∗)]⟩
+ η2Eξ,u∥∇̂Ffξ(x

t)−∇Ffξ(x
∗)∥2

= ∥xt − x∗∥2 − 2η⟨xt − x∗,Eξ,u[∇Ffξ(x
t)−∇Ffξ(x

∗)]⟩
− 2η⟨xt − x∗,Eξ[Eu∇̂Ffξ(x

t)−∇Ffξ(x
t)]⟩+ Eξ,uη

2∥∇̂Ffξ(x
t)−∇Ffξ(x

∗)∥2
= ∥xt − x∗∥2 − 2η⟨xt − x∗,∇Ff(x

t)−∇Ff(x
∗)⟩

− 2η⟨√ηLs′
(
xt − x∗) , 1√

ηLs′
(EξEu[∇̂Ffξ(x

t)−∇Ffξ(x
t))]⟩

+ Eξ,uη
2∥∇̂Ffξ(x

t)−∇Ffξ(x
∗)∥2

(a)

≤ ∥xt − x∗∥2 − 2η⟨xt − x∗,∇Ff(x
t)−∇Ff(x

∗)⟩+ η2L2
s′∥xt − x∗∥2

+
1

L2
s′
Eξ∥Eu∇̂Ffξ(x

t)−∇Ffξ(x
t))∥2 + η2Eξ,u∥∇̂Ffξ(x

t)−∇Ffξ(x
∗)∥2 (2.64)

35

Where (a) follows from the inequality 2⟨u,v⟩ ≤ ∥u∥2 + ∥v∥2 for any (u,v) ∈ (Rd)2.
From Proposition 1 (b), since almost each fξ is (Ls′ , s

′)-RSS (hence also (Ls′ , s2)-RSS), we
know that for the εF , εF c and εabs defined in Proposition 1 (b), we have for almost all ξ:
Eu∥∇̂Ffξ(x

t)∥2 ≤ εF∥∇Ffξ(x
t)∥2 + εF c∥∇F cfξ(x

t)∥2 + εabsµ
2. This allows to develop the

last term of equation 2.64 into the following:

Eξ.u∥∇̂Ffξ(x
t)−∇Ffξ(x

∗)∥2 ≤ 2Eξ,u∥∇̂Ffξ(x
t)∥2 + 2Eξ∥∇Ffξ(x

∗)∥2
≤ 2εFEξ∥∇Ffξ(x

t)∥2 + 2εF cEξ∥∇F cfξ(x
t)∥2

+ 2εabsµ
2 + 2Eξ∥∇Ffξ(x

∗)∥2

≤ 2εF
[
2Eξ∥∇Ffξ(x

t)−∇Ffξ(x
∗)∥2 + 2Eξ∥∇Ffξ(x

∗)∥2
]

+ 2εF c

[
2Eξ∥∇F cfξ(x

t)−∇F cfξ(x
∗)∥2

+2Eξ∥∇F cfξ(x
∗)∥2

]
+ 2εabsµ

2 + 2Eξ∥∇Ffξ(x
∗)∥2 (2.65)

Just like the proof in [157], we will express our result in terms of the infinity norm of
∇f(x∗). For that, we will plug above the two following inequalites: Same as their proof
of Lemma 19, we have ∥∇Ff(x

∗)∥ ≤ ∥∇sf(x
∗)∥ (that is because we will have equality if

the sets in the definition of F , namely F (t−1), F (t) and supp(x∗), are disjoints (because
their cardinality is respectively k, k and k∗), but they may intersect). And we also have
∥∇sf(x

∗)∥22 ≤ s∥∇f(x∗)∥2∞ (by definition of the ℓ2 norm and of the ℓ∞ norm). Similarly,
we also have: ∥∇F cf(x∗)∥22 ≤ (d− k)∥∇f(x∗)∥2∞, since |F c| ≤ d− k.

Therefore, we obtain:

Eξ,u∥∇̂Ffξ(x
t)−∇Ffξ(x

∗)∥2
≤ 4εFEξ∥∇Ffξ(x

t)−∇fξ(x∗)∥2 + 4εF cEξ∥∇F cfξ(x
t)−∇fξ(x∗)∥2

+ ((4εF s+ 2) + εF c(d− k))Eξ∥∇fξ(x∗)∥2∞ + 2εabsµ
2

(a)

≤ 4εFEξ∥∇fξ(xt)−∇fξ(x∗)∥2 + ((4εF s+ 2) + εF c(d− k))Eξ∥∇fξ(x∗)∥2∞ + 2εabsµ
2

(2.66)

Where (a) follows by observing in Proposition 1 (b) that εF c ≤ εF , and using the definition
of the Euclidean norm. Let us plug the above into equation 2.64, and use the fact that,
from Proposition 1 (a), since each fξ is (Ls′ , s

′ := max(s2, s))-RSS, it is also (Ls′ , s2)-RSS,
so for the εµ from Proposition 1 (a), we have, for almost any given ξ: ∥Eu∇̂Ffξ(x

t) −
∇Ffξ(x

t))∥2 ≤ εµµ
2, and let us also use the fact that since each fξ is (Ls′ ,max(s2, s))-

RSS , it is also (Ls′ , |F |)-RSS (since |F | ≤ s) which gives that for almost any ξ: fξ:
∥∇fξ(xt)−∇fξ(x∗)∥2 ≤ L2

s′∥xt − x∗∥2, to finally obtain:

Eξ,u∥xt − x∗ − η∇̂Ffξ(x
t) + η∇Ffξ(x

∗)∥2
≤ (1 + η2L2

s′ + 4εFη
2L2

s′)∥xt − x∗∥2 − 2η⟨xt − x∗,Eξ[∇fξ(xt)−∇fξ(x∗)]⟩
+

εµ
L2
s′
µ+ 2η2εabsµ

2 + η2((4εF s+ 2) + εF c(d− k))Eξ∥∇f(x∗)∥2∞
= (1 + η2L2

s′ + 4εFη
2L2

s′)∥xt − x∗∥2 − 2η⟨xt − x∗,∇f(xt)−∇f(x∗)⟩

36

+
εµ
L2
s′
µ+ 2η2εabsµ

2 + η2((4εF s+ 2) + εF c(d− k))Eξ∥∇f(x∗)∥2∞ (2.67)

Since f is (νs, s)-RSC, it is also (νs, |F |)-RSC, since |F | ≤ 2k + k∗ ≤ s, therefore, we have:
⟨xt − x∗,∇f(xt) − ∇f(x∗)⟩ ≥ νs∥xt − x∗∥2 (this can be proven by adding together the
definition of (νs, s)-RSC written respectively at x = xt,y = x∗, and at x = x∗,y = xt).
Plugging this into the above:

Eξ,u∥xt − x∗ − η∇̂Ffξ(x
t) + η∇Ffξ(x

∗)∥2

≤
(
1− 2ηνs + (4εF + 1)L2

s′η
2
)
∥xt − x∗∥2

+
εµ
L2
s′
µ2 + 2η2εabsµ

2 + η2((4εF s+ 2) + εF c(d− k))Eξ∥∇fξ(x∗)∥2∞ (2.68)

The value of η that minimizes the left term in η is equal to νs
(4εF+1)L2

s′
(because the optimum

of the quadratic function ax2 + bx+ c is attained in − b
2a

and its value is − b2

4a
+ c). Let us

choose it, that is, we fix η = νs
(4εF+1)L2

s′
. Let us now define the following ρ:

ρ2 = 1− 4ν2
s

4(4εF + 1)L2
s′
= 1− ν2

s

(4εF + 1)L2
s′

(2.69)

We therefore have:

Eξ,u∥xt − x∗ − η∇̂Ffξ(x
t) + η∇Ffξ(x

∗)∥2 (2.70)

≤ ρ2∥xt − x∗∥2 + εµ
L2
s′
µ2 + 2η2εabsµ

2 + η2((4εF s+ 2) + εF c(d− k))Eξ∥∇fξ(x∗)∥2∞
(2.71)

We can now use the fact that for all (a, b) ∈ (R+)
2 :
√
a+ b ≤ √a+

√
b, as well as Jensen’s

inequality, to obtain:

Eξ,u∥xt − x∗ − η∇̂Ffξ(x
t) + η∇Ffξ(x

∗)∥ (2.72)

≤ ρ∥xt − x∗∥+
√
εµ

Ls′
µ2 + η

√
2εabsµ2 + η

√
((4εF s+ 2) + εF c(d− k)))Eξ∥∇fξ(x∗)∥2∞

(2.73)

We can now formulate a first decrease-rate type of result, before the hard thresholding
operation, as follows, using for η the value previously defined, and with:

yt := xt − η∇̂Ffξ
(
xt
)

(2.74)

Eξ,u∥yt − x∗∥ = Eξ,u

∥∥∥xt − η∇̂Ffξ
(
xt
)
− x∗

∥∥∥
≤ Eξ,u

∥∥∥xt − x∗ − η∇̂Ffξ
(
xt
)
+ η∇Ffξ(x

∗)
∥∥∥+ ηEξ ∥∇Ffξ(x

∗)∥

= Eξ,u

∥∥∥xt − x∗ − η∇̂Ffξ
(
xt
)
+ η∇Ffξ(x

∗)
∥∥∥+ ηEξ

√
∥∇Ffξ(x∗)∥2

37

≤ Eξ,u

∥∥∥xt − x∗ − η∇̂Ffξ
(
xt
)
+ η∇Ffξ(x

∗)
∥∥∥+ η

√
Eξ ∥∇Ffξ(x∗)∥2

≤ ρ
∥∥xt − x∗∥∥+ η(

√
((4εF s+ 2) + εF c(d− k))Eξ ∥∇f(x∗)∥2∞

+
√
s

√
Eξ ∥∇fξ(x∗)∥2∞) +

√
εµ

Ls′
µ2 + η

√
2εabsµ2

= ρ
∥∥xt − x∗∥∥+ η(

√
(4εF s+ 2) + εF c(d− k) +

√
s)
√
Eξ ∥∇fξ(x∗)∥2∞

+

√
εµ

Ls′
µ+ η

√
2εabsµ2

(a)

≤ ρ
∥∥xt − x∗∥∥+ η(

√
(4εF s+ 2) + εF c(d− k) +

√
s)σ

+

√
εµ

Ls′
µ+ η

√
2εabsµ2

≤ ρ
∥∥xt − x∗∥∥+ η(

√
(4εF s+ 2) + εF c(d− k) +

√
s)σ

+

√
εµ

Ls′
µ+ η

√
2εabsµ2 (2.75)

Where (a) follows from the σ-FGN assumption. We now consider xt+1, that is, the best-
k-sparse approximation of zt := xt − η∇̂fξ (xt) from the hard thresholding operation in
SZOHT. We can notice that xt

F = xt (because supp(xt) = F (t) ⊂ F), which gives yt = zt
F .

Since F (t+1) ⊂ F , the coordinates of the top k magnitude components of zt are in F , so
they are also those of the top k magnitude components of zt

F = yt. Therefore, xt+1 is also
the best k-sparse approximation of yt. Therefore, using Corollary 2.5.1, we obtain:

∥xt+1 − x∗∥ ≤ γ∥yt − x∗∥ (2.76)

with:

γ :=

√
1 +

(
k∗/k +

√
(4 + k∗/k) k∗/k

)
/2 (2.77)

Where k∗ = ∥x∗∥0. Plugging this into equation 2.75 gives:

Eξ,u∥xt+1 − x∗∥ ≤ γρ
∥∥xt − x∗∥∥+ γη(

√
(4εF s+ 2) + εF c(d− k)) +

√
s)σ (2.78)

+ γ

√
εµ

Ls′
µ+ η

√
2εabsµ (2.79)

This will allow us to obtain the following final result:

E∥xt+1 − x∗∥ ≤ γρ
∥∥xt − x∗∥∥+ γ η

(√
(4εF s+ 2) + εF c(d− k) +

√
s
)

︸ ︷︷ ︸
:=a

σ

+ γ

(√
εµ

Ls′
+ η
√
2εabs

)
︸ ︷︷ ︸

:=b

µ (2.80)

with η = νs
(4εF+1)L2

s′
and ρ2 = 1 − 2ν2s

(4εF+1)L2
s′
. We need to have ργ < 1 in order to have a

contraction at each step. Let us suppose that k ≥ ρ2k∗/(1− ρ2)2: we will show that this

38

value for k allows to verify that condition on ργ. That implies k∗

k
≤ (1−ρ2)2

ρ2
. We then have,

from the definition of γ in equation 2.77:

γ2 ≤ 1 +

(
(1− ρ2)2

ρ2
+

√(
4 +

(1− ρ2)2

ρ2

)
(1− ρ2)2

ρ2

)
1

2

= 1 +

(
(1− ρ2)2

ρ2
+

√(
4ρ2 + 1 + ρ4 − 2ρ2

ρ2

)
(1− ρ2)2

ρ2

)
1

2

= 1 +

(
(1− ρ2)2

ρ2
+

√
(1 + ρ2)2(1− ρ2)2

ρ4

)
1

2

= 1 +

(
(1− ρ2)2

ρ2
+

(1 + ρ2)(1− ρ2)

ρ2

)
1

2
= 1 +

(
(1− ρ2)(1− ρ2 + 1 + ρ2)

ρ2

)
1

2

= 1 +
(1− ρ2)

ρ2
=

1

ρ2
(2.81)

Therefore, we indeed have ργ ≤ 1 when choosing k ≥ ρ2k∗/(1− ρ2)2.

Unrolling inequality equation 2.80 through time, we then have, at iteration t+ 1, and
denoting by ξt+1 the noise drawn at time step t+1 and ut+1 the random directions u1, ...,uq

chosen at time step t+ 1, from the law of total expectations:

E∥xt+1 − x∗∥ = Eξt,ut,..,ξ1,u1Eξt+1,ut+1|ξt,ut,..,ξ1,u1∥xt+1 − x∗∥
≤ Eξt,ut,..,ξ1,u1 [γρ∥xt − x∗∥+ γaσ + γbµ]

= γρEξt,ut,..,ξ1,u1 [∥xt − x∗∥] + γaσ + γbµ

≤ (γρ)2Eξt−1,ut−1,..,ξ1,u1 [∥xt−1 − x∗∥] + (γρ)2aσ

+ γaσ + (γρ)2bµ+ γbµ

≤ (γρ)t+1∥x(0) − x∗∥+
(

t∑
i=0

(γρ)i

)
γaσ +

(
t∑

i=0

(γρ)i

)
γbµ

= (γρ)t+1∥x(0) − x∗∥+ 1− (γρ)t

1− γρ
γaσ +

1− (γρ)t

1− γρ
γbµ

≤ (γρ)t+1∥x(0) − x∗∥+ 1

1− γρ
γaσ +

1

1− γρ
γbµ (2.82)

Where the last inequality follows from the fact that ργ < 1.

2.5.5 Proof of Remark 4

Proof. We show below that, due to the complex impact of q and k on the convergence
analysis in our ZO + HT (hard-thresholding) setting (compared to ZO only), q cannot be
taken as small as we want here (in particular we can never take q = 1, which is different
from classical ZO algorithms such as [92, Corollary 3]), if we want Theorem 1 to apply with
ργ < 1. In other words, there is a necessary (but not sufficient) minimal (i.e. > 1) value
for q.

39

A necessary condition for Theorem 1 to describe convergence of SZOHT is that ργ < 1.
From the expressions of ρ and γ We have ρ = ρ(q, k), and γ = γ(k). We recall those
expressions below:

γ =

√
1 +

(
k∗/k +

√
(4 + k∗/k) k∗/k

)
/2

ρ2 = 1− ν2s
(4εF+1)L2

s′
= 1− 1

(4εF+1)κ2 with κ =
Ls′
νs

.

with: εF = 2d
q(s2+2)

(
(s−1)(s2−1)

d−1
+ 3
)
+2, with s = 2k+k∗ (we consider the smallest s possible

from Theorem 1)
So therefore:

ρ2 = 1− 1[
8d

q(s2+2)
((s−1)(s2−1)

d−1
+ 3) + 9

]
κ2

= 1− 1[
8d

q(s2+2)
((2k+k∗−1)(s2−1)

d−1
+ 3) + 9

]
κ2

(2.83)

Let us define a := 16dκ2(s2−1)
q(s2+2)(d−1)

and b := κ2
[

8d
q(s2+2)

[(s2−1)(k∗−1)
d−1

+ 3] + 9
]

We then have:

ρ2 = 1− 1

ak + b
(2.84)

To ensure convergence, we need to have ργ < 1, therefore (following the same derivation
as in equation 2.81) a necessary condition that we need to verify is k ≥ ρ2k∗/(1− ρ2)2.

Which means we need:

k ≥
(
1− 1

ak+b

)
k∗(

1
ak+b

)2
k ≥

[
(ak + b)2 − (ak + b)

]
k∗

k ≥ k∗ [a2k2 + 2abk + b2 − ak − b
]

0 ≥ k∗a2k2 +

(
2ab− 1

k∗ − a

)
k∗k +

(
b2 − b

)
k∗ (2.85)

If we want that there exist a k such that this is true, we need (since k∗ ≥ 0):

∆ ≥ 0 (2.86)

with:

∆ := k∗2(2ab− 1

k∗ − a)2 − 4k∗2a2
(
b2 − b

)
40

= k∗2
(
4a2b2 +

(
1

k∗ + a

)2

− 4ab

(
1

k∗ + a

))
− 4k∗2a2

(
b2 − b

)
(2.87)

= k∗2
[
4a2b2 +

1

k∗2 + a2 +
2a

k∗ −
4ab

k∗ − 4a2b− 4a2b2 + 4a2b

]
= 1 + a2k∗2 + 2ak∗ − 4abk∗ (2.88)

∆ ≥ 0⇒ 1 + a2k∗2 + 2ak∗ ≥ 4abk∗ (2.89)

Let us express a and b in terms of q, as:

a =
A

q
with A =

16dκ2 (s2 − 1)

(s2 + 2) (d− 1)
(2.90)

b =
B

q
+ C with B = κ2

[
8d

(s2 + 2)

(
(s2 − 1) (k∗ − 1)

d− 1
+ 3

)]
(2.91)

and with C = 9κ2 (2.92)

So plugging in equation 2.89, what we need is:

1 +
A2

q2
k∗2 + 2

A

q
k∗ ≥ 4

A

q

(
B

q
+ C

)
k∗

q2 + A2k∗2 + 2Ak∗q ≥ 4ABk∗ + 4CAqk∗

q2 + q (2Ak∗ − 4CAk∗) + A2k∗2 − 4ABk∗ ≥ 0 (2.93)

To ensure that, we need to compute ∆′, defined as:

∆′ := (2Ak∗ − 4CAk∗)2 − 4
(
A2k∗2 − 4ABk∗)

= 4A2k∗2 + 16C2A2k∗2 − 16CA2k∗2 − 4A2k∗2 + 16ABk∗

= 16CA2k∗2(C − 1) + 16ABk∗ = 16Ak∗ [k∗C(C − 1)A+B] (2.94)

We now have:
C = 9κ2 ⇒ C ≥ 1⇒ ∆′ ≥ 0 (2.95)

Therefore, there is a minimal value for q, and it is:

q ≥ qmin (2.96)

With:

qmin =
− (2Ak∗ − 4CAk∗) +

√
16CA2k∗2(C − 1) + 16ABk∗

2

=
2Ak∗ (2C − 1) +

√
16A2k∗2

[
C(C − 1) + B

Ak∗

]
2

(2.97)

Case s2 > 1: Assuming s2 > 1 gives A > 0, and since A = 16dκ2(s2−1)
(s2+2)(d−1)

and B =
8κ2d
s2+2

((s2−1)(k∗−1)
d−1

+ 3)

41

This gives: B
Ak∗

= 1
2
− 1

2k∗
+ 3

2
d−1

k∗(s2−1)

Therefore: qmin = Ak∗
[
2C − 1 + 2

√
C(C − 1) + 1

2
− 1

2k∗
+ 3

2
d−1

k∗(s2−1)

]
with C = 9κ2, which reads:

qmin =
16d(s2 − 1)k∗κ2

(s2 + 2) (d− 1)

[
18κ2 − 1 + 2

√
9κ2(9κ2 − 1) +

1

2
− 1

2k∗ +
3

2

d− 1

k∗(s2 − 1)

]
(2.98)

Case s2 = 1: In the case s2 = 1, we have A = 0, so therefore, from equation 2.97, qmin = 0,
so the necessary condition on q as above so that there exist k such that: k ≥ ρ2k∗/(1− ρ2)2

does not apply here. We may therefore think that it may be possible to take q = 1 in
that case. However, there is another condition on k that should also be enforced, which is
that k ≤ d (since we cannot keep more components than d). And in that s2 = 1 case, we
have a = 0, and b = κ2[8d

q
+ 9] (from equation 2.90 and equation 2.91). Now, enforcing

the condition k ≥ k∗[(ak + b)2 − (ak + b)] = k∗b(b − 1) leads to the following chain of
implications (i.e. each downstream assertion is a necessary condition for the upstream
assertion):

k

k∗ ≥ b(b− 1) and k ≤ d =⇒ d

k∗ ≥ (b− 1)2

=⇒
√

d

k∗ + 1 ≥ b =⇒
√

d

k∗ + 1 ≥ B

q
+ C

=⇒
√

d

k∗ + 1− C ≥ B

q

=⇒ q ≥ B√
d
k∗

+ 1− C
and C −

√
d

k∗ + 1 > 0

=⇒ q ≥ B√
d
k∗

+ 1
=⇒ q ≥ 8κ2d√

d
k∗

+ 1
(2.99)

Where the last inequality follows from the expression of B in equation 2.91 when s2 = 1.

So the right hand side in equation 2.99 is also a minimal necessary value for q in this
case, though for a different reason than in the case s2 > 1.

2.5.6 Proof of Corollary 1

Proof. We first restrict the result of Theorem 1 to a particular q. By inspection of
Proposition 1 (b), we choose q such that the part of εF that depends on q becomes 1:

42

we believe this will allow to better understand the dependence between variables in our
convergence rate result, although other choices of q are possible. Therefore, we choose:

q′ :=
2d

s2 + 2

(
(s− 1)(s2 − 1)

d− 1
+ 3

)
(2.100)

so that we obtain: ε′F := 1 + 2 = 3 (from Proposition 1 (b)), which also implies :

η′ :=
νs

(4ε′F + 1)L2
s′
=

νs
13L2

s′
(2.101)

and:
ρ′

2
:= 1− 2ν2

s

(4ε′F + 1)L2
s′
= 1− 2ν2

s

13L2
s′

(2.102)

Now, regarding the value of q, we also note that any value of random directions q′′ ≥ q′

can be taken too, since the bound in Proposition 1 (b) would then still be verified for ε′F
(that is, we would still have E∥∇̂Ffξ(x)∥2 ≤ ε′F∥∇Ffξ(x)∥2 + ε′F c∥∇F cfξ(x)∥2 + εabsµ

2)
(with ε′F c the value of εF c for q = q′).
Therefore, we will choose a value q′′ so that our result is simpler. First, notice that
s ≤ d =⇒ 1− 1

s
≤ 1− 1

d
=⇒ s−1

s
≤ d−1

d
=⇒ s−1

d−1
≤ s

d
. Therefore, if we take q ≥ 2s+6 d

s2
,

we will also have q ≥ 2d
s2+2

(
(s−1)(s2−1)

d−1
+ 3
)
= q′.

Let us now impose a lower bound on k that is slightly (twice) bigger than the lower
bound from Theorem 1. As will become clear below, this allows us to have a ργ enough
bounded away from 1, which guarantees a reasonable constant in the O notation for the
query complexity (see the end of the proof). Let us therefore take:

k ≥ 2k∗ ρ2

(1− ρ2)2
(2.103)

and plug the value of ρ above into the expression:

k ≥ 2k∗ ρ′2

(1− ρ′2)2
⇐⇒ k ≥ 2k∗

1− 2ν2s
13L2

s′

(2ν2s
13L2

s′
)2
⇐⇒ k ≥ 2k∗

((
13L2

s′

2ν2
s

)2

− 13L2
s′

2ν2
s

)

⇐⇒ k ≥ 2k∗(
13

2
κ2)(

13

2
κ2 − 1) (2.104)

With κ denoting Ls′
νs

. Therefore, if we take:

k ≥ (86κ4 − 12κ2)k∗ (2.105)

we will indeed verify the formula above k ≥ 2k∗(13
2
κ2)(13

2
κ2 − 1).

We now turn to describing the query complexity of the algorithm: To ensure that (γρ)t∥x(0)−
x∗∥ ≤ ε, we need:

t ≥ 1

log 1
γρ

log(
1

ε
) log(∥x(0) − x∗∥) (2.106)

43

with γρ belonging to the interval (0, 1). Let us compute more precisely an upper bound to
ργ in this case, to show that it is reasonably enough bounded away from 1: Taking k as
described in equation 2.103, and plugging that value into the expression of γ from Theorem
1, we obtain:

γ2 = 1 +

(
(1− ρ2)2

2ρ2
+

√(
4 +

(1− ρ2)2

2ρ2

)
(1− ρ2)2

2ρ2

)
/2 (2.107)

≤ 1 +
1√
2

(
(1− ρ2)2

ρ2
+

√(
4 +

(1− ρ2)2

ρ2

)
(1− ρ2)2

ρ2

)
/2 (2.108)

(a)
= 1 +

1√
2

1− ρ2

ρ2
(2.109)

Where the simplification in (a) above follows similarly to equation 2.81. Therefore, in that
case, we have:

ρ2γ2 ≤ ρ2 +
1√
2
(1− ρ2) =

1√
2
+ ρ2(1− 1√

2
)

=
1√
2
+ (1− 2

13κ2
)(1− 1√

2
) = 1−

2(1− 1√
2
)

13κ2

(a)

≤ 1− 1

26κ2
(2.110)

Where (a) follows because (1− 1√
2
) ≈ 0.29 ≥ 1/4 Therefore:

1

(ργ)2
≥ 1

1− 1
26κ2

(2.111)

Given that log(1
1−x

) ≥ x for all x ∈ [0, 1), we have:

log

(
1

(ργ)2

)
≥ 1

26κ2
(2.112)

Therefore:
1

log(1
ργ
)
=

2

log(1
(ργ)2

)
≤ 52κ2 (2.113)

Therefore, plugging this into equation 2.106, we obtain that with t ≥ 52κ2 log(1
ε
) log(∥x(0)−

x∗∥) = O(κ2 log(1
ε
)) iterations, we can get (γρ)t∥x− x∗∥ ≤ ε.

To obtain the query complexity (QC), we therefore just need to multiply the number
of iterations by the number of queries per iteration q = 2s + 6 d

s2
: to ensure (γρ)t∥x −

x∗∥ ≤ ε, we need to query the zeroth-order oracle at least the following number of times:
(2s+ 6 d

s2
)52κ2 log(1

ε
) log(∥x(0) − x∗∥) = O((k + d

s2
)κ log(1

ε
)), since s = 2k + k∗.

2.5.7 Proof of Corollary 2

Almost all fξ are L-smooth, which is equivalent to saying that they are (L, d)-RSS. So we
can directly plug s2 = d in equation equation 2.100, which gives a necessary value for q of:

q =
2d

d+ 2
(s+ 2) (2.114)

44

Since any value of q larger than the one in equation 2.114 is valid, we choose q ≥ 2(s+2)(≥
2d
d+2

(s + 2)) for simplicity. The query complexity is obtained similarly as in the proof
of Corollary 1 above, with that new value for q (the number of iterations needed is
unchanged from the proof of Corollary 1), only the query complexity q per iteration
changes), which means we need to query the zeroth-order oracle the following number of
times: 2(s+ 2)52κ2 log(1

ε
) log(∥x(0) − x∗∥) = O(kκ log(1

ε
))

2.6 Visualization: Projection of the Gradient Estimator
onto a Sparse Support

Below we plot the true gradient ∇f(x) and its estimator ∇̂f(x) (for q = 1), as well as
their respective projections ∇Ff(x) and ∇̂Ff(x), with F = {0, 1} (i.e. F is the hyperplane
z = 0), for ndir random directions. In Figure 2.2(b), due to the large number of random
directions, we plot them as points not vectors. For simplicity, the figure is plotted for µ→ 0,
and s2 = d. We can see that even though gradient estimates ∇̂f(x) are poor estimates of
∇f(x), ∇̂Ff(x) is a better estimate of ∇Ff(x).

(a) ndir = 1 (b) ndir = 106

Figure 2.2: ∇f(x) and ∇̂f(x) and their projections ∇Ff(x) and ∇̂Ff(x) onto F .

Remark 5. An interesting fact that can be observed in Figure 2.2(b) above is that when
µ→ 0 and s2 = d, the ZO gradient estimates belong to a sphere. This comes from the fact
that, in that case, the ZO estimate using the random direction u is actually a directional
derivative (scaled by d): ∇̂f(x) = d⟨∇f(x),u⟩u, for which we have :

∥∇̂f(x)− d

2
∇f(x)∥2 = d2(⟨∇f(x),u⟩)2⟨u,u⟩+ d2

4
∥∇f(x)∥2

− d2⟨∇f(x),u⟩⟨u,∇f(x)⟩

=
d2

4
∥∇f(x)∥2 (2.115)

(since ∥u∥ = 1). That is, gradient estimates belong to a sphere of center d
2
∇f(x) and

radius d
2
∥∇f(x)∥. However, the distribution of ∇̂f(x) is not uniform on that sphere: it is

more concentrated around 0 as we can observe in Figure 2.2(b).

45

2.7 Parameters Relations: Value of ργ depending on q

and k∗

In this section, we further illustrate the importance on the value of q as discussed in Remark
4, by showing in Figure 2.3 that if q is too small, then there does not exist any k that verifies
the condition k ≥ k∗ρ2

(1−ρ2)2
, no matter how small is k∗ (i.e., even if k∗ = 1). However, if q is

large enough, then there exist some k∗ such that this condition is true. To generate the
curves below, we simply use the formulas for γ = γ(k, k∗) and ρ = ρ(s, q) with s = 2k + k∗

from Theorem 1, and with d = 30000 and s2 = d.

(a) q = 200 (b) q = 5000 (c) q = 30000

Figure 2.3: ργ (y axis) as a function of k (x axis) for several values of q and k∗.

2.8 Experiments

2.8.1 Dimension Independence/Weak-Dependence

In this section, we show the dependence of SZOHT on the dimension. To that end, we
consider minimizing the following synthetic problem:

min
x

f(x) s.t. ∥x∥0 ≤ k (2.116)

with k = 500, and f chosen as: f(x) = 1
2
∥x − y∥2, with yi = 0 if i < d − k∗ and

yi =
1

(k∗−(d−i))
if i > d− k∗ with k∗ = 5. In other words, the k∗ last components of y are

regularly spaced from 1/k∗ to 1: in a way, this simulates the recovery of a k∗-sparse vector
y by observing only the squared deviation of some queries x. In that case, we can easily
check that f verifies the following properties:

• f is L-smooth with L = 1, as well as (Ls′ , s
′)-RSS for any s′ such that 1 ≤ s′ ≤ d,

with Ls′ = 1, and (νs, s)-RSC with s = 2k + k∗ and νs = 1 (so κ = L
νs

=
Ls′
νs

= 1)

• y = x∗ = argminx f(x) s.t. ∥x∥0 ≤ k∗

• f(y) = f(x∗) = 0

46

• ∇f(y) = 0 so f is σ-FGN with σ = 0

We also note that the above setting of k and k∗ verifies k ≥ (86κ4 − 12κ2)k∗ (since
κ = 1). Finally, we initialize x0 such that x0

i = 1/d if d − k∗ ≥ i and 0 otherwise. We
choose this initialization and not x0 = 0, just to ensure that ∇f(x0)i ≠ 0 for any i: this
way the optimization is really done over all d variables, not just the k∗ last ones. In
addition, this initialization ensures that ∥x0−x∗∥ is constant no matter the d, which makes
the convergence curves comparable. We consider several settings of s2 to showcase the
dependence on the dimension below.

Dimension Independence.

• s2 = d: As from Corollary 2, we take q = 2(s+ 2) with s = 2k + k∗ (i.e. q = 2014).
We choose µ = 1e− 8, to have the smallest possible system error due to zeroth-order
approximations. As we can see in Figure 2.3(c), all curves are superimposed, which
shows that the query complexity is indeed dimension independent, as described by
Corollary 2

• s2 = O(dk) (We choose s2 = ⌊ dk⌋): As from Corollary 1, we take q = 2s + 6 d
s2

with
s = 2k + k∗. In that case, from Corollary 1, the query complexity will still be O(k)
(i.e. dimension independent), as a sum of two O(k) terms, although larger than in
the case s2 = d above (since the constant from the O notation in Corollary 1 will be
larger here). We can observe that this is indeed the case in Figure 2.3(f).

Dimension Weak-Dependence. We now turn to the case where s2 is fixed. We choose
q as in Corollary 1 (q = 2s+ 6 d

s2
with s = 2k + k∗): the query now depends on d in that

case, as predicted by Corollary 1, which can indeed be observed in Figure 2.3(i).

2.8.2 Sensitivity Analysis

We first conduct a sensitivity parameter analysis on a toy example, to highlight the
importance of the choice of q, as discussed in Section 2.4. We fix a target sparsity
k∗ = 5, choose k = 74k∗, and consider a sparse quadric function f : R5000 → R, with:
f(x) = 1

2
∥a ⊙ (x − b)∥2 (⊙ denotes the elementwise product), with ai = 1 if i ≥ d − s

and 0 otherwise (to ensure f is s-RSC and smooth, with νs = L = 1), and bi =
i

100d
for

all i ∈ [d− 70k∗] and 0 for all d− 70k∗ ≤ i ≤ d (we make such a choice in order to have
∥∇f(x∗)∥ small enough). We choose η as in Theorem 1: η = 1

(4εF+1)
with εF defined in

Proposition 1 in terms of s and d (we take s2 = d), µ = 1e− 4, and present our results in
Figure 2.6, for six values of q. We can observe on Figure 2.6(b) that the smaller the q, the
less f(x) can descend. Interestingly, we can also see on Figure 2.6(a) that for q = 1 and 20,
∥x(t) − x∗∥ diverges: we can indeed compute that ργ > 1 for those q, which explains the
divergence, from Theorem 1.

47

(a) f(x)

(b) ∥x− x∗∥

(c): s2 = d

(d) f(x)

(e) ∥x− x∗∥

(f): s2 = ⌊ dk⌋

(g) f(x)

(h) ∥x− x∗∥

(i): s2 = 50

Figure 2.4: Dependence on the dimensionality of the query complexity.

2.8.3 Real Data Experiments

2.8.3.1 Baselines

We compare our SZOHT algorithms with state of the art zeroth-order algorithms that can
deal with sparsity constraints, that appear in Table 2.1:

1. ZSCG [7] is a Frank-Wolfe ZO algorithm, for which we consider an ℓ1 ball constraint.

2. RSPGF [59] is a proximal ZO algorithm, for which we consider an ℓ1 penalty.

3. ZORO [31] is a proximal ZO algorithm, that makes use of sparsity of gradients as-
sumptions, using a sparse reconstruction algorithm at each iteration to reconstruct the
gradient from a few measurements. Similarly, as for ZSCG, we consider an ℓ1 penalty.

In all the applications below, we will tune the sparsity k of SZOHT, the penalty of RSPGF
and ZORO, and the radius of the constraint of ZSCG, such that all algorithms attain a
similar converged objective value, for fair comparison.

2.8.3.2 Applications

We compare the algorithms above on two tasks: a sparse asset risk management task
from [36], and an adversarial attack task [38] with a sparsity constraint.

48

Sparse Asset Risk Management. We consider the portfolio management task and
dataset from [36], similarly to [31]. We have a given portfolio of d assets, with each asset i
giving an expected return mi, and with a global covariance matrix of the return of assets
denoted as C. The cost function we minimize is the portfolio risk: xTCx

2(
∑d

i=1 xi)2
, where x is a

vector where each component xi denotes how much is invested in each asset, and we require
to minimize it under a constraint of minimal return r:

∑d
i=1 mixi∑d

i=1 xi
. We enforce that constraint

using the Lagrangian form below. Finally, we add a sparsity constraint, to restrict the
investments to only k assets. Therefore, we obtain the cost function below:

min
x∈Rd

x⊤Cx

2
(∑d

i=1 xi

)2 + λ

(
min

{∑d
i=1mixi∑d
i=1 xi

− r, 0

})2

s.t. ∥x∥0 ≤ k (2.117)

We use three datasets: port3, port4 and port5 from the OR-library [12], of respective
dimensions d = 89; 98; 225. We keep r and λ the same for the 4 algorithms: r = 0.1, λ = 10
(for port3 and port4); and r = 1e− 3, λ = 1e− 3 for port5. For SZOHT, we set k = 10,
s2 = 10, q = 10, and (µ, η) = (0.015, 0.015) for port4, and (µ, η) = (0.1, 1) for port5 (µ and
η are both obtained by grid search over the interval [10−3, 103]). For all other algorithms,
we got the optimal hyper-parameters through grid search. We present our results in Figure
2.7.

Few Pixels Adversarial Attacks. We consider the problem of adversarial attacks with a
sparse constraint. Our goal is to minimize minδ f(x+δ) such that ∥δ∥0 ≤ k, where f is the
Carlini-Wagner cost function [38], that is computed from the outputs of a pre-trained model
on the corresponding dataset. We consider three different datasets for the attacks: MNIST,
CIFAR, and Imagenet, of dimension respectively d = 784; 3072; 268203. All algorithms are
initialized with δ = 0. We set the hyperparameters of SZOHT as follows: MNIST: k = 20,
s2 = 100, q = 100, µ = 0.3, η = 1; CIFAR: k = 60, s2 = 100, q = 1000, µ = 1e−3, η = 0.01;
ImageNet: k = 100000, s2 = 1000, q = 100, µ = 0.01, η = 0.015. We present our results
in Figure 2.8. All experiments are conducted in the workstation with four NVIDIA RTX
A6000 GPUs, and take about one day to run.

We also provide additional results for the adversarial attacks problem in Figure 2.5. The
parameters we used for SZOHT to generate that table are the same as in 2.8.3.2, except for
MNIST, for which we choose k = 20, q = 10, and s2 = 10, and for ImageNet, for which
we choose k = 100000, s2 = 20000 and q = 100. As we can see, SZOHT allows to obtain
sparse attacks, contrary to the other algorithms, and with a smaller ℓ2 distance and a larger
success rate, using less iterations: this shows that SZOHT allows to enforce sparsity, and
efficiently exploits that sparsity in order to have a lower query complexity than vanilla
sparsity constrained ZO algorithms.

2.8.3.3 Results and Discussion

We can observe from Figures 2.7 and 2.8 that the performance of SZOHT is comparable or
better than the other algorithms. This can be explained by the fact that SZOHT has a

49

Method ASR ℓ0 dist. ℓ2 dist. Iter
RSPGF 78% 100% 10.9 67

ZORO 75% 100% 15.1 550

ZSCG 79% 100% 10.3 252

SZOHT 79% 2.5% 8.5 36
(a) MNIST

Method ASR ℓ0 dist. ℓ2 dist. Iter
RSPGF 83% 100% 4.1 326

ZORO 86% 100% 62.9 592

ZSCG 86% 100% 8.4 126

SZOHT 91% 1.9% 2.6 26
(b) CIFAR

Method ASR ℓ0 dist. ℓ2 dist. Iter.
RSPGF 91% 100% 19.9 137

ZORO 90% 100% 111.9 674

ZSCG 76% 100% 111.3 277

SZOHT 95% 37.3% 10.5 61
(c) ImageNet

Figure 2.5: Summary of results on adversarial attacks.

linear convergence, but the query complexity of ZSCG and RSPGF is in O(1/T). We can
also notice that RSPGF is faster than ZSCG, which is natural since proximal algorithms
are faster than Frank-Wolfe algorithms (indeed, in case of possible strong-convexity, vanilla
Frank-Wolfe algorithms maintain a O(1/T) rate [58], when proximal algorithms get a linear
rate [13, Theorem 10.29]). Finally, it appears that the convergence of ZORO is sometimes
slower, particularly at the early stage of training, which may come from the fact that ZORO
assumes sparse gradients, which is not necessarily verified in real-world use cases like the
ones we consider; in those cases where the gradient is not sparse, it is possible that the
sparse gradient reconstruction step of ZORO does not work well. This motivates even
further the need to consider algorithms able to work without those assumptions, such as
SZOHT.

2.9 Conclusion

In this paper, we proposed a new algorithm, SZOHT, for sparse zeroth-order optimization.
We gave its convergence analysis and showed that it is dimension independent in the smooth
case, and weak dimension-dependent in the RSS case. We further verified experimentally
the efficiency of SZOHT in several settings. Moreover, throughout the paper, we showed
how the condition number of f as well as the gradient error have an important impact
on the convergence of SZOHT. As such, it would be interesting to study whether we can
improve the query complexity by regularizing f , by using an adaptive learning rate or
acceleration methods, or by using recent variance reduction techniques. Finally, it would
also be interesting to extend this work to a broader family of sparse structures, such as
low-rank approximations or graph sparsity. We leave this for future work.

50

(a) f(x) (b) ∥x− x∗∥

Figure 2.6: Sensitivity analysis.

(a) port3 (b) port4 (c) port5

Figure 2.7: f(x) vs. # queries (asset management).

(a) MNIST (b) CIFAR (c) Imagenet

Figure 2.8: f(x) vs. # queries (adversarial attack).

51

2.10 ZOHT Extension: Variance Reduction

2.10.1 Introduction

So far, we have analyzed an algorithm for zeroth-order hard-thresholding, and shown that
in order to compensate for the potential expansivity of the hard-thresholding operator,
one needs to take a specific number of random directions at each step. In this section,
we discuss how variance reduction algorithms ([47, 68, 72, 79, 88, 115]) can improve such
number of random directions. The paper [159] proposes several variance reduction methods
for zeroth-order hard-thresholding, in a unified way. For more details on those algorithms,
as well as their theoretical analysis, we refer the reader to [159]. In this section, we provide
the experimental comparison of such algorithms, which is our main contribution in the
paper [159]. We formulate the minimization problem to be solved as follows:

min
θ∈Rd
F(θ) = 1

n

n∑
i=1

fi(θ), s.t. ∥θ∥0 ≤ k, (2.118)

where, F(θ) is the empirical risk. ∥θ∥0 represents the number of non-zero directions, and d
is the dimension of θ. Below we give the original formulation of such algorithms, from [159],
and where the zeroth-order gradient estimate is the one from the section above, i.e. for any
i ∈ [n]:

∇̂fi(θ) =
d

qµ

q∑
j=1

(fi(θ + µuj)− fi(θ))uj, (2.119)

with q the number of random directions, and u1, ...,un sampled as per Section 2.3.1. For
the pM -SZHT algorithm (Algorithm 3 below), a key step is to select at each iteration a
random index set J ⊆ [n] of memory locations to update according to:

∀j ∈ [n] : â+
j :=

{
∇̂fj(θ), if j ∈ J

âj, otherwise
,

in such a way that any j has the same probability p/n of being updated1, and where
p is the number of directions updated at each time (see [72]). The distribution over sets
J is determined according to the specific algorithm one would wish to implement. For
example, if the probability to sampled a set J , which we denote P {J}, is as follows:

P {J} =
{
1/
(
n
p

)
if |J | = p

0 otherwise
, then we obtain the p-SAGA-ZHT algorithm. Additionally,

we denote SAGA-SZHT the p-SAGA-SZHT algorithm when p = 1.
1Originally, p-Memorization is called q-Memorization. We changed it to p to avoid conflicts with the q

standing for the number of random directions in zeroth-order.

52

Algorithm 3: Stochastic Variance Reduced Zeroth-Order Hard-Thresholding with
p-Memorization (pM-SZHT)

Initialization: Learning rate η, maximum number of iterations T , initial point θ(0),
number of random directions q, and number of coordinates to keep at each iteration
k.

Output : θ(T).
for r = 1 to T do

Update â(r−1)

Sample ir uniformly at random from {1, 2, . . . , n}
Compute ĝ(r−1)(θ(r−1)) = ∇̂fir(θ(r−1))− â

(r−1)
ir

+ 1
n

∑n
j=1 â

(r−1)
j

Compute θ(r) = Hk(θ
(r−1) − ηg(r−1)(θ(r−1)))

end

Algorithm 4: Stochastic variance reduced zeroth-order Hard-Thresholding (VR-
SZHT)

Initialization: Learning rate η, maximum number of iterations T , initial point θ(0),
SVRG update frequency m, number of random directions q, and number of
coordinates to keep at each iteration k.

Output : θT .
for r = 1 to T do

θ(0) = θr−1;
µ̂ = 1

n

∑n
i=1 ∇̂fi(θ(0));

for t = 0, 1, . . . ,m− 1 do
Randomly sample it uniformly at random from {1, 2, . . . , n};
Compute ZO estimate ∇̂fit(θ(r)), ∇̂fit(θ(0));
θ̄(r+1) = θ(r) − η(∇̂fit(θ(r))− ∇̂fit(θ(0)) + µ̂);
θ(r+1) = Hk(θ̄

(r+1));
end
θr = θ(r+1), random t′ ∈ [m− 1];

end

53

Algorithm 5: Stochastic variance reduced zeroth-order Hard-Thresholding with
SARAH (SARAH-SZHT)
Input :Learning rate η, maximum number of iterations T , initial point θ(0),

number of random directions q, maximum error ε, and number of
coordinates to keep at each iteration k.

Output : θT .
Initialization: Initialize θ0 = θ̃(r−1) and g(0) = 1

n

∑n
i=1 ∇̂fi(θ0). for r = 1, . . . , T

do
θ0 = θ̃(r−1);
g(0) = 1

n

∑n
i=1 ∇̂fi(θ0);

θ(1) = θ(0) − ηg(0);
for t = 1, ...,m− 1 do

Sample it uniformly at random from [n];
ĝ(t) = ∇̂fit(θ(t))− ∇̂fit(θ(t−1)) + ĝ(t−1);
θ(t+1) = θ(t) − ηg(t);

end
Set θ̃(r) = θ(d) with d chosen uniformly at random from {0, 1, . . . ,m};

end

2.10.2 Experiments

We compare the performance of VR-SZHT, SAGA-SZHT, and SARAH-SZHT with that of
the following algorithms, in terms of IZO (iterative zeroth-order oracle, i.e. number of calls
to fi) and NHT (number of hard-thresholding operations):

• SZOHT [46]: the vanilla stochastic ZO hard-thresholding algorithm from the section
above.

• FGZOHT: the full gradient version of SZOHT.

2.10.2.1 Ridge Regression

We first consider the following ridge regression problem, where the functions fi are defined
as follows: fi(θ) = (x⊤

i θ − yi)
2 + λ

2
∥θ∥22, where λ is some regularization parameter. We

generate each xi randomly from a unit norm ball in Rd, and a true random model θ∗ from
a normal distribution N (0, Id×d). Each yi is defined as yi = x⊤

i θ
∗. We set the constants

of the problem as such: n = 10, d = 5, λ = 0.5. Before training, we preprocess each
column by subtracting its mean and dividing it by its empirical standard deviation. We
run each algorithm with k = 3, q = 200, µ = 10−4, s2 = d = 5, and for the variance reduced
algorithms, we choose m = 10. For all algorithms, the learning rate η is found through
grid-search in {0.005, 0.01, 0.05, 0.1, 0.5}: we choose the learning rates giving the lowest
function value (averaged over several runs) at the end of training. We stop each algorithm

54

once its number of IZO reaches 80,000. All curves are averaged over 3 runs, and we plot
their mean and standard deviation in Figure 2.9. As we can observe, SZOHT converges to
higher function values than other algorithms: this illustrates the advantage of the variance
reduction techniques, which can allow to attain smaller function values than plain SZOHT,
but at a cheaper cost than FGZOHT.

Figure 2.9: #IZO and #NHT on the ridge regression task.

Figure 2.10: #IZO and #NHT on the few pixels adv. attacks (CIFAR-10), for the original
class ’airplane’.

2.10.2.2 Few Pixels Universal Adversarial Attacks

Finally, we consider a few-pixel universal adversarial attacks problem. Let some classifier
be trained on a dataset of images. We assume that it can only be accessed as a black
box, i.e. it only returns the log probabilities of each estimated class, given an input image.
This is a typical real-life scenario, where for instance the model can only be accessed
through a provider’s API. We seek to find a single perturbation θ ∈ Rd, to apply to
several images at once, (we denote those images by xi, i = {1, . . . , n}, and their true
label as yi) to make the predicted class for those images different than their true class.
Further discussion on universal perturbations can be found in [50]. In addition, we seek an
adversarial perturbation that is sparse, to preserve as much as possible the original image.
As is usual in black-box adversarial attacks, we maximize the following Carlini-Wagner

55

Table 2.2: Comparison of universal adversarial attacks on n = 10 images from the CIFAR-10
test-set, from the ’airplane’ class. For each algorithm, the leftmost image is the sparse
adversarial perturbation applied to each image in the row. (’auto’ stands for ’automobile’,
and ’plane’ for ’airplane’)

Image ID 3 27 44 90 97 98 111 116 125 153

Original

FGZOHT

plane plane plane ship deer plane plane plane ship truck

SZOHT

plane plane plane plane deer plane bird bird ship truck

VR-SZHT

plane plane auto plane ship plane plane plane ship truck

SAGA-SZHT

plane frog plane plane deer plane plane plane ship ship

SARAH-SZHT

plane plane auto ship ship plane bird plane frog truck

loss [34, 38], which encourages the prediction from the model to be different from the true
class:

fi(θ) =max{Fyi(clip(xi + θ))−max
j ̸=yi

Fj(clip(xi + θ)), 0}, (2.120)

where xi is the original i-th image (rescaled to have values in [−0.5, 0.5]), of true class yi,
clip denotes the clipping operation into [−0.5, 0.5], θ is the universal perturbation that
we seek to optimize, and each function Fk outputs the log-probability of image xi being
of class k as predicted by the model, for k ∈ {1, .., K}, with K the number of classes
(similarly to [38,74,95]). Similarly to [95] (Section A.11), we evaluate the algorithm on a
dataset of n = 10 images from the test-set of the CIFAR-10 dataset [83], of dimensionality
32× 32× 3 = 3, 072, from the same class ’airplane’, which we display in Table 2.2. We take
as model F a fixed neural network, already trained on the train-set of CIFAR-10, obtained
from the supplementary material of [46]. We set k = 60, µ = 0.001, q = 10, s2 = d = 3, 072,
and the number of inner iterations of the variance reduced algorithms to m = 10. We check

56

at each iteration the number of IZO, and we stop training if it exceeds 600. Finally, for
each algorithm, we grid-search the learning rate η in {0.001, 0.005, 0.01, 0.05}. The best
learning rates (giving the curve which obtained the smallest minimum function value),
are respectively: FGZOHT: 0.05, SZOHT: 0.005, VR-SZHT: 0.01, SAGA-SZHT: 0.05,
SARAH-SZHT: 0.05. Our experiments are conducted on a workstation of 128 CPU cores.
The training curves are presented in Figure 2.10: SAGA-SZHT obtains the lowest function
value at the end of the training, followed by SARAH-SZHT. In terms of attack success rate,
SARAH-SZHT presents the highest success rate, as it has successfully attacked 7/10 images.
We provide further results, on 3 more classes (’ship’, ’bird’, and ’dog’) in the Section, which
demonstrate even further the advantage of variance reduction methods in our setting.

2.10.2.3 Extra Experiments on Synthetic Ridge Regression

In this section we provide additional curves for the first problem described in section 2.10.2,
which we recall here for sake of completeness. We consider a ridge regression problem,
where each function fi is defined as follows:

fi(θ) = (x⊤
i θ − yi)

2 +
λ

2
∥θ∥22, (2.121)

where λ is some regularization parameter.

Experimental Setting. First, as in the main paper, we consider a synthetic dataset:
we generate each xi randomly from a unit norm ball in Rd, and a true random model
θ∗ from a normal distribution N (0, Id×d). Each yi is defined as yi = x⊤

i θ
∗. We set the

constants of the problem as such: n = 10, d = 5, λ = 0.5. Before training, we pre-process
each column by subtracting its mean and dividing it by its empirical standard deviation.
We run each algorithm with µ = 10−4, s2 = d = 5, and for the variance reduced algorithms,
we choose m = 10. For all algorithms, the learning rate η is found through grid-search in
{0.005, 0.01, 0.05, 0.1, 0.5}, and we keep the η giving the lowest function value (averaged
over 3 runs) at the end of training. We stop each algorithm once its number of IZO reaches
80,000. We plot in Figures 2.11, 2.11(g), and 2.12 the mean and standard deviation of the
curves for a value of k = 2, 3, and 4 respectively.

Results and Discussion. We can observe the several phenomena on the Figures 2.11,
2.11(g), and 2.12. First, we can observe that for larger k, the algorithms converge to
lower function values (which is natural because optimization is then over a larger set), but
also, the algorithms are more stable (for example, SARAH-SZHT converges more easily
with k = 4 than with k = 2), which is due to the hard-thresholding operator being more
non-expansive. Then, although a larger number of random directions q may slow down the
query complexity (IZO), we observe that it can also stabilize some algorithms that would
otherwise be less unstable, such as SARAH-SZHT (which converges better for q = 200 than
for q = 50).

57

(a): q=50 (b): q=100 (c): q=200

(d): q=50 (e): q=100 (f): q=200

Figure 2.11: #IZO (up) and #NHT (down) on the ridge regression task, synthetic example
(k=2).

(a): q=50 (b): q=100 (c): q=200

(d): q=50 (e): q=100 (f): q=200

(g): #IZO (up) and #NHT (down) on the ridge regression task, synthetic example (k=3).

58

(h): q=50 (i): q=100 (j): q=200

(k): q=50 (l): q=100 (m): q=200

Figure 2.12: #IZO (up) and #NHT (down) on the ridge regression task, synthetic example
(k=4).

2.10.2.4 Real Data Ridge Regression

Experimental Setting. Second, we now compare the above algorithms, for the same
ridge regression problem as above, but on the following open source real-life datasets
(obtained from OpenML [144]), of which a summary is presented in Table 2.3. We take
λ = 0.5. Similarly as above, before training, we pre-process each column by subtracting
its mean and dividing it by its empirical standard deviation. We run each algorithm with
µ = 10−4, s2 = d (where d depends on the dataset), and for the variance reduced algorithms
with an inner and outer loop (VR-SZHT and SARAH-SZHT), we choose m = ⌊ ⌋

n
2⌋. For all

algorithms, the learning rate η is found through grid-search in {10−i, i ∈ {1, ..., 7}}, and
we choose the one giving the lowest function value (averaged over 5 runs) at the end of
training. We stop each algorithm once its number of IZO reaches 100,000. We plot the
optimization curves (averaged over the 5 runs) for several values of q and k, to study their
impact on the convergence.

Results and Discussion. We present our results in Figures 2.13 and 2.14. Those results
are consistent with preliminary results on the synthetic dataset from Section 2.10.2.3,
namely, that overall, although taking a larger q may worsen the IZO complexity, it can
help some algorithms to converge more smoothly, by reducing the error of the zeroth-order
estimator. Additionally, we can observe that taking a larger k often helps to achieve
smoother convergence. Finally, consistently across experiments, we observe that SARAH-
SZHT has difficulties converging: this seems to indicate that SARAH-SZHT may be highly

59

Table 2.3: Datasets used in the comparison. Reference: [51], Source: [144], downloaded
with scikit-learn [122].

Dataset d n

bodyfat(2) 14 252
auto-price(3) 15 159

impacted by the errors introduced by the zeroth-order estimator. SARAH-SZHT could
potentially be improved by a more careful choice of the number of inner iterations, and/or
by running SARAH+, which is an adaptive version of SARAH [116], which we leave for
future work.

(a): q=5, k=5 (b): q=10, k=5 (c): q=5, k=10 (d): q=10, k=10

(e): q=5, k=5 (f): q=10, k=5 (g): q=5, k=10 (h): q=10, k=10

Figure 2.13: #IZO (up) and #NHT (down) on the ridge regression task, bodyfat dataset.

2.10.2.5 Additional Results for Universal Adversarial Attacks

In this section , we provide additional results for the universal adversarial attacks setting
from our Experiments Section, for the 3 additional classes: ’ship’, ’bird’, and ’dog’. As
we can observe in Figures 2.16 , 2.15, and 2.17 below respectively, in most of such cases,
there is a variance-reduced algorithm which can achieve better performance than the vanilla
zeroth-order hard-thresholding algorithms, (for instance, SARAH-ZHT in Figure 2.15,
and SAGA-ZHT in Figure 2.16) which demonstrates the applicability of such algorithms.
Correspondingly, this can also be verified by observing the misclassification success in Table
2.5, 2.4 and 2.6: even if a smaller value for the cost does not necessarily imply a strictly
higher attack success rate, still, overall, more successful universal attacks also have a higher
success rate of attack.

60

(a): q=5, k=5 (b): q=10, k=5 (c): q=5, k=10 (d): q=10, k=10

(e): q=5, k=5 (f): q=10, k=5 (g): q=5, k=10 (h): q=10, k=10

Figure 2.14: #IZO (up) and #NHT (down) on the ridge regression task, autoprice dataset.

Figure 2.15: #IZO and #NHT on the few pixels adversarial attacks task (CIFAR-10), for
the original class ’ship’.

61

Table 2.4: Comparison of universal adversarial attacks on n = 10 images from the CIFAR-
10 test-set, from the ’ship’ class. For each algorithm, the leftmost image is the sparse
adversarial perturbation applied to each image in the row. (’auto’ stands for ’automobile’,
and ’plane’ for ’airplane’)

Image ID 1 15 18 51 54 55 72 73 79 80

Original

FGZOHT

ship frog ship ship ship ship ship ship ship ship

SZOHT

ship frog ship deer ship deer ship ship ship plane

VR-SZHT

ship frog truck plane ship ship ship ship ship auto

SAGA-SZHT

ship frog truck ship plane deer ship ship ship ship

SARAH-SZHT

ship frog auto auto ship ship ship ship ship ship

Figure 2.16: #IZO and #NHT on the few pixels adversarial attacks task (CIFAR-10), for
the original class ’bird’.

62

Table 2.5: Comparison of universal adversarial attacks on n = 10 images from the CIFAR-
10 test-set, from the ’bird’ class. For each algorithm, the leftmost image is the sparse
adversarial perturbation applied to each image in the row.

Image ID 65 67 70 75 86 113 123 129 138 149

Original

FGZOHT

frog bird deer dog deer bird bird deer frog bird

SZOHT

frog bird bird bird bird bird bird ship bird bird

VR-SZHT

frog bird bird bird bird frog bird ship bird bird

SAGA-SZHT

frog bird deer dog bird bird cat deer frog bird

SARAH-SZHT

frog bird frog bird bird frog bird bird frog bird

Figure 2.17: #IZO and #NHT on the few pixels adversarial attacks task (CIFAR-10), for
the original class ’dog’.

63

Table 2.6: Comparison of universal adversarial attacks on n = 10 images from the CIFAR-10
test-set, from the ’dog’ class. For each algorithm, the leftmost image is the sparse adversarial
perturbation applied to each image in the row.

Image ID 12 16 31 33 39 42 101 128 141 148

Original

FGZOHT

bird dog deer dog dog cat cat cat dog dog

SZOHT

frog dog bird dog dog cat dog cat dog dog

VR-SZHT

dog dog bird dog dog horse dog dog dog dog

SAGA-SZHT

dog dog dog dog dog horse dog cat dog dog

SARAH-SZHT

deer dog dog frog dog cat frog dog dog dog

2.11 ZOHT Extension: Discontinuous and Non-convex
Case

We now turn to a variant of ZOHT which still does zeroth-order hard-thresholding (although
the random directions are sampled from a Gaussian distribution), but which this time
considers another setting for the convergence proofs: the setting of bounded, discontinuous,
and non-convex functions. This section is based on our co-authored paper Hard-Thresholding
Meets Evolution Strategies in Reinforcement Learning, currently under review at IJCAI 2024.
In this section, we mostly describe the theoretical part from the paper, which corresponds
to our main contribution amongst the collaboration. As mentioned, we will analyze the
convergence of a hard-thresholding zeroth-order algorithm, in the case where the function to
be optimized is a potentially discontinuous and non-convex function. Such case can occur for

64

instance in a reinforcement learning setting. In such a case, we will prove local convergence
of our algorithm. In this section, we will use a slightly different terminology, closer to
the reinforcement learning literature, and call the optimization algorithm which optimizes
a cumulative reward based on a zeroth-order estimator of the gradient, an Evolutionary
Strategy (ES).

2.11.1 Preliminaries

Markov Decision Process. We are concerned with the reinforcement learning problem,
where our objective is to optimize a policy, denoted by πθ, parameterized by θ. This policy
is defined over a Markov decision process represented by M = ⟨S,A, T , d0,R, γ⟩. For each
episode, the initial state s0 is sampled from the distribution d0. At each time step t, given
an observation st ∈ S, the policy determines an action at ∈ A, which then results in an
immediate reward r(st,at) ∈ R. Subsequently, the system transitions to a new observation
st+1 in accordance with the dynamics T . The resulting trajectory can be presented as
τ = {(st,at, r, st+1)}. In order to balance the trade-off between immediate rewards and
long-term rewards, the discount factor γ is introduced.

2.11.2 Objective Function

Our objective is to maximize the fitness score achieved by the policy while minimizing the
impact induced from the task-irrelevant features. We hypothesize that employing a sparse
policy can effectively manage these redundant observations.

Fitness Score. The performance of the policy can be quantified by the fitness function,
which is defined as the expected sum of rewards over its rollout trajectories:

F (θ) := Eτ∼d0,πθ ,T fτ (θ), with fτ (θ) :=

|τ |∑
t=0

r(st,at) (2.122)

It’s important to note that, in this context, the discount factor γ is set to 1. This is
in contrast to traditional RL settings where it often assumes values such as 0.99 or 0.9.
Another characteristic is that the fitness function can be discontinuous w.r.t. the policy
parameters due to the randomness in environments and the complex reward function.

ℓ0-Constrained Optimization. We propose mitigating the impact of task-irrelevant
features through a sparse policy, under the premise that sparsity can effectively filter out
irrelevant information present in inputs. Formally, our objective is to improve a policy while
also constraining its complexity, i.e., the ℓ0 constrained optimization, with ∥ · ∥0 denotes
the ℓ0 (pseudo-)norm (number of non-zero components of a vector):

max
θ

F (θ) s.t. ∥θ∥0 ≤ k (2.123)

65

Why the ℓ0 Constraint? In our context, where only a small subset of observations
is task-relevant, irrelevant features can significantly degrade performance. ℓ0-constrained
optimization directly enforces a constraint on the ℓ0 norm of the learned parameter vector,
ensuring the sparsity of the resulting model, alluring for feature selection tasks. Unlike
ℓ1-constrained optimization, which promotes sparsity but does not guarantee exact zero
values, ℓ0-constrained optimization offers precise control over sparsity by allowing certain
model parameters to be set exactly to zero. This capability not only enhances model
interpretability but also makes it well-suited for our setting, i.e., decision-making with
irrelevant observations.

2.11.3 Our Proposal: NESHT

We introduce NESHT, a solution for decision-making problems involving both task-relevant
and irrelevant features. While NES and the Hard-Thresholding operator are not novel
concepts individually, their compatibility when used together may raise questions. To be
self-contained, we now provide brief descriptions of each.

NES We employ the competitive NES algorithm, to optimize the policy, with the following
gradient estimator:

∇θEϵ∼N (0,I)F (θ + σϵ) =
1

σ
Eϵ∼N (0,Id×d)F (θ + σϵ)ϵ, (2.124)

where N (0, Id×d) denotes the unit-variance centered Gaussian in Rd. In NES, the gradient
is approximated through sampling and serves as an approximation, bypassing challenges
with non-differentiable functions or exploding gradients. For the derivation about Equa-
tion (2.124), please refer to Section 2.11.5.1.

Hard-Thresholding operator. To achieve the ℓ0-constrained optimization described
in Equation (2.123), we introduce the hard-thresholding operator into NES. It truncates
the parameter vector, retaining only k components with the most significant absolute
magnitudes, represented as trunc(θ, k), or, more succinctly, as trunc(θ). While incorporating
HT into NES is straightforward, the compatibility between HT and NES remains an open
question.

Compatibility concerns. To establish the convergence of NESHT, it is essential to
demonstrate the convergence of the hard-thresholding algorithm for non-convex and dis-
continuous F , with a gradient estimated as in equation 2.124 via the NES algorithm. In
the literature, [152] proved the convergence of stochastic algorithms in the case of non-
convex objective functions F , for a non-convex proximal term which can be taken as the
indicator function of the set of all k-sparse vectors (i.e. the ℓ0 pseudo-ball). This proof of
convergence applies to stochastic hard-thresholding algorithms. However, their analysis
assumes Lipschitz-smoothness of F and considers a general stochastic estimator of the

66

Algorithm 6: NES with Hard-Thresholding
Input : α - Learning rate, θ0 - Initial policy parameters in Rd, n - Population size,

N - Number of rollouts collected for each agent, σ - Noise standard
deviation, k - Number of parameters to be kept.

for t = 0, 1, 2, ...T − 1 do
for i = 1, ..., n do

Sample a Gaussian perturbation ϵi ∼ N (0, Id×d) ;
for j = 1, ..., N do

Sample a rollout τ ϵij ;
Compute returns fτϵij

(θt + σϵi);

end
end
Set θt+ 1

2
← θt +

α
nNσ

∑n
i=1

∑N
j=1 fτ

ϵi
j (θt + σϵi)ϵi;

Truncate the parameters: θt+1 ← trunc(θt+ 1
2
, k);

end

gradient. Therefore, it does not account for the specific errors introduced by the gradient
estimator from equation 2.124. More recently, the work of [103], analyzes the convergence
of zeroth-order methods (similar to evolutionary strategies) for a Lipschitz-continuous and
non-convex function F . However, in our case, F is discontinuous in general. Thus, to the
best of our knowledge, the convergence of evolutionary strategies in such setting remains an
open question. In the next section, we address this question by demonstrating that, under
mild assumptions, proper convergence of Algorithm 6 is guaranteed.

2.11.4 Convergence Analysis

The integration of NES with HT is detailed in Algorithm 6, where the hard-thresholding
operator is applied to the learned parameters after each update. In this section, we
provide a proof of convergence for NES combined with Hard-Thresholding, i.e., our NESHT,
addressing the compatibility concern. Additionally, we would like to highlight that our
analysis can also cover the case where no hard-thresholding operator is used (it only suffices
to take the proximal term r in our proof of Theorem 2 in Section 2.11.5.4 to be the constant
zero): to our knowledge, such a proof of convergence for NES for general discontinuous
functions F (which correspond to a realistic reinforcement learning setting) is the first in the
literature, and we hope that such a result, as well as the subsequent remarks and discussions
on the influence of each parameter on the convergence rate (bound on the expected reward
B, dimension d, etc.) can be of interest to the NES community.

2.11.4.1 Assumptions

To proceed with the proof of convergence of NESHT, we will need the following assumptions
below.

67

Assumption 5 (Boundedness of F). The fitness function F is bounded on its domain, that
is, there exists a universal constant B > 0 such that:

∀θ ∈ Rd : |F (θ)| ≤ B (2.125)

Remark 6. F (θ) represents the expected rewards obtained by executing policy πθ. The
boundedness assumption is typically reasonable since immediate rewards do not tend to
infinity, and evaluation trajectories always have finite lengths. Importantly, this assumption
remains valid even when dealing with task-irrelevant features.

Additionally, we will need the following assumption on the variance of the cumulative
reward, for a given parameter vector θ.

Assumption 6 (Bounded variance of fτ). We posit the existence of a universal constant
C > 0 such that the variance of the cumulative reward for any θ ∈ {θ0,θ 1

2
, ...,θT− 1

2
,θT} is

bounded by C, i.e.:
Eτ

[
|fτ (θ)− F (θ)|2

]
≤ C.

Remark 7. Assumption 6 reflects the inherent randomness from both the policy, whether it
is deterministic or stochastic, and the environment, which introduces randomness through
factors such as the dynamics T , the reward function r(s, a), and the initial distribution
of states d0. Also, please note that if the reward and the episode length are limited, as
is usually the case in RL, then Assumptions 5 and 6 are satisfied. An observant reader
may notice that the inclusion of task-irrelevant features unavoidably leads to an increase in
the constant C due to the introduction of randomness. As we will see later, this increase
hampers the convergence of NES algorithms.

2.11.4.2 Smoothness

Since F can be discontinuous in general, maximizing F directly is impossible with evo-

lutionary strategies. For instance if F is Dirac-like, such as F (θ) =

{
1 if θ = 0

0 otherwise
, the

probability (for a given θ), to successfully sample an ϵ such that F (θ + σϵ) = 1 is actually
zero, which means the parameters will be updated with probability zero. However, we can
instead analyze the convergence of a smoothed version of F , Fσ, defined below:

Fσ(θ) := Eϵ∼N (0,Id×d)F (θ + σϵ)

Note that Fσ converges towards F for small σ in terms of eh-convergence, as described in
Theorem 3.2 from [156]. The first step, to derive the convergence rate of our algorithm
with Fσ, is to prove that Fσ is smooth, and to derive its smoothness constant, which we
then use in a proof framework similar to [152].

Lemma 4. Under Assumption 5, Fσ is Lipschitz-smooth (i.e. its gradient is Lipschitz-
continuous), with a smoothness constant L = (d+1)B

σ2 , that is, such L verifies:

∀θ1,θ2 ∈ (Rd)2 : ∥∇Fσ(θ1)−∇Fσ(θ2)∥ ≤ L∥θ1 − θ2∥ (2.126)

68

Proof. Proof in Section 2.11.5.3.

For discontinuous functions F , the fact that Fσ is smooth was already known before
in the literature (see e.g. [52]). However, such works did not provide an explicit formula
for the smoothness constant L. Here, for the first time in the literature (to the best of our
knowledge), using the boundedness assumption on F , we could derive an explicit formula
for the smoothness constant L.

One can therefore see that L is proportional to both the bound of the fitness function,
B, and the dimension of the policy parameters, d, while being inversely proportional to the
variance σ2. In Section 4.4, we will observe the role of such smoothness constant L: the
smaller it is, the faster the NES algorithm will converge.

2.11.4.3 Error of the gradient estimator

We now consider the gradient estimator with a general population of n random perturbations,
and a number of rollouts of N for each perturbation. More precisely, assume that we sample
n random directions {ϵi}ni=1 := {ϵ1, ..., ϵn} independently and identically distributed, and
that for each of these random directions ϵi, we sample we sample N rollouts {τ ϵij }Nj=1 :=
{τ ϵi1 , .., τ ϵiN } independently and identically distributed, to obtain a final collection of rollouts
{{τ ϵij }Nj=1}ni=1 , and to get N ×n gradient estimators ĝσ,ϵi,τϵij

, (i, j) ∈ [n]× [N] defined below:

ĝσ,ϵi,τϵij
(θ) :=

1

σ
fτϵij

(θ + σϵi)ϵi (2.127)

which we aggregate in the following estimator:

ḡσ,{ϵi}ni=1,{{τ
ϵi
j }Nj=1}ni=1

(θ) :=
1

nN

n∑
i=1

N∑
j=1

ĝσ,ϵi,τϵij
(θ) (2.128)

Lemma 5. Under Assumptions 5 and 6, the estimator above is an unbiased estimate of the
gradient of the smoothed function F , and its variance is bounded, more precisely, for any
θ ∈ {θ0,θ 1

2
, ...,θT− 1

2
,θT}:

Eḡσ,{ϵi}ni=1,{{τ
ϵi
j }Nj=1}ni=1

(θ) = ∇θFσ(θ) (2.129)

E∥ḡσ,{ϵi}ni=1,{{τ
ϵi
j }Nj=1}ni=1

(θ)−∇θFσ(θ)∥2 ≤
Cd

Nσ2
+

dB2

nσ2
(2.130)

Proof. See Section 2.11.5.2. We begin by examining the unbiasedness (using a standard
proof) and variance (using a novel proof up to our knowledge) of the gradient estimator for
a single perturbation, i.e., ĝσ,ϵi,τϵij

. We then generalize our results to account for multiple
perturbations (n) and rollouts (N).

69

Advantages of NESHT: Reduction in Constant C. We present here a formal
explanation for the superiority of NESHT over NES in the lens of constant C. Thanks to
hard-thresholding, along training, θt and θt+ 1

2
remain in the space of k-sparse vectors (up

to small perturbations σϵ), whereas they could live anywhere in Rd in the case of NES.
Based on the hypothesis that the hard-thresholding operation effectively selects relevant
features, NESHT can successfully mitigate the impact of irrelevant features and reduces
the value of C. To illustrate this, one can consider the following scenario.

Example 1. Consider a one-step decision-making experiment, with linear policy, and fitness
score given as: fτ (θ) := x⊤(θ − θ∗), where θ∗ is a k-sparse vector, with S ⊆ [d] being the
set of coordinates of its non-zero components, i.e., the relevant features. In addition, x is
the input state, which we assume follows a normal distribution N (0, σId×d) for σ > 0 (Id×d

denoting the identity). We then have, for any bounded policy θ ∈ [−1, 1]d:

Ex|fτ (θ)− F (θ)|2 = Ex(θ − θ∗)⊤xx⊤(θ − θ∗)

= (θ − θ∗)⊤σ2Id×d(θ − θ∗) = σ2∥θ − θ∗∥2 (2.131)

Therefore, if there are many irrelevant components present (i.e. |[d] \ S| is large), the
episode-wise variance of fτ (and its bound C) will be higher when θ is dense (proportionally
to σ2). As established in Lemma 5, the proper convergence of NESHT depends on this
variance. The application of a hard-thresholding operator explicitly filters out some of the
noisy features, introducing a bias that steers the policy towards making decisions exclusively
based on sparse observations. This reduces the variance and ensures better convergence to
the optimal policy.

In practical terms, given a fixed interaction budget for n and N , the variance of the
gradient estimator may be too high for vanilla NES, causing it to fail to converge to the
optimal policy. However, with the reduced variance of the gradient estimator in NESHT,
as described above, convergence of the parameters θ to a stationary point of the fitness
function F can be successfully ensured, as stated in Theorem 2.

2.11.4.4 Convergence Rate

Equipped with Lemmas 4 and 5, we can now prove the convergence of Algorithm 6,
following for the most part the framework of [152] for stochastic gradient descent with a
non-convex function and a non-convex non-smooth proximal term, but plugging into it our
novel bounds for (i) the smoothness constant of Fσ and (ii) the variance of the gradient
estimator ḡσ,{ϵi}ni=1,{{τ

ϵi
j }Nj=1}ni=1

(θ) , under our specific assumption of boundedness of F .
Because of such non-convex and non-smooth optimization problem, convergence is proven
in terms of the expected distance of the Fréchet sub-differential ∂̂(−Fσ(θ) + 1ℓ0(k)(θT)) to
zero [128], where 1ℓ0(k) denotes the indicator function of the ℓ0 constraint, i.e. 1ℓ0(k)(θ) ={
0 if θ is k-sparse
+∞ otherwise

. Note that this is the standard way to define stationary points for

non-smooth regularizers (such as sparsity constraints) (see e.g. Thm. 2 in [152] or Thm. 3
in [48]).

70

Theorem 2. Under Assumption 5 and 6, run Algorithm 6, with α = c
L

(
0 < c < 1

2

)
, a

number of iterations T = 2c2B/ (αϵ2) and N ≥ 4c1dC
σ2ϵ2

and n ≥ 4c1dB2

σ2ϵ2
for t = 0, . . . , T − 1,

then the output θT of Algorithm 6 satisfies

E
[
dist

(
0, ∂̂

(
−Fσ (θT) + 1ℓ0(k)(θT)

))]
≤ ϵ,

where c1 =
2c(1−2c)+2
c(1−2c)

, and c2 =
12−8c
1−2c

, and where dist(z, S) is the distance of a set S to a
point z, defined as the minimal Euclidean distance of any point in S to z. In particular
in order to have E

[
dist

(
0, ∂̂(−Fσ(θ) + 1ℓ0(k)(θT))

)]
≤ ϵ, that is, in order to ensure

convergence to a stationary point, it suffices to set T = O (1/ϵ2).

Proof. Proof in Section 2.11.5.4.

Remark 8. As per Theorem 2, we can see that a large smoothing radius σ will ease
convergence, as it allows one to evaluate fewer random perturbations and rollouts. However,
the counterpart is that the function optimized Fσ may be further away from the true function
F .

Remark 9 (Overall complexity). From Theorem 2, to ensure convergence to a stationary
point up to tolerance ϵ, we need to take N = O(dC

σ2ϵ2
), n = O(dB2

σ2ε2
) , and T = O(B

αϵ2
)

(a)
=

O(BL
ϵ2
)
(b)
= O(B

2d
ϵ2σ2), where (a) follows from the definition of α from Theorem 2, and (b) follows

from Lemma 4. Therefore, the overall number of episodes needed to ensure convergence is
TNn = O(d

3B4C
σ6ϵ6

). Note however that if one has access to a massively parallel device able
to run in parallel Nn simulations, which is very common in RL settings (e.g. as in [130]),
the time complexity of the whole optimization process is simply T = O(B2d

ϵ2σ2).

2.11.5 Proofs of the Main Results

2.11.5.1 NES Gradients

OpenAI NES [130] approximates the gradient with the following estimator:

∇θEϵ∼N (0,Id×d)F (θ + σϵ) =
1

σ
Eϵ∼N (0,Id×d){F (θ + σϵ)ϵ}, (2.132)

with θ for the learned policy’s parameters, ϵ for the Gaussian noise on the parameter vector,
and σ to control the standard deviation.

∇θEϵ∼N (0,Id×d)F (θ + σϵ) = ∇θEx∼N (θ,σ2I)F (x)

= ∇θ

∫
x

P (x|θ, σ2I)F (x)dx

=

∫
x

∇θP (x|θ, σ2I)F (x)dx (Leibniz integral rule)

=

∫
x

P (x|θ, σ2I)∇θ log
[
P (x|θ, σ2I)

]
F (x)dx

(
log derivative trick

)
71

= Ex∼N (θ,σ2I)

{
F (x)∇θ

(
− ∥x− θ∥22

2σ2

)}
(Gaussian P.D.F.)

=
1

σ
Eϵ∼N (0,Id×d)

{
F (θ + σϵ) · ϵ

} (
x← θ + σϵ

)
(2.133)

2.11.5.2 Proof of Lemma 5

Bias and Variance of the Single Perturbation, Full Expected Policy Gradient
Estimator. Before deriving the error of the full gradient estimator (i.e. averaged over
both the n perturbations, and the N rollouts), we first provide the bias and variance of the
gradient estimator for a single random perturbation ϵ, defined below as:

ĝσ,ϵ(θ) =
1

σ
F (θ + σϵ)ϵ. (2.134)

Bias: We first start by deriving the bias of such estimator.

Lemma 6.
Eτ,ϵ[ĝσ,ϵ(θ)] = ∇θFσ(θ) (2.135)

Proof. We proceed as in [52].

Let us denote the following d-dimensional isotropic Normal distribution:

ϕ(ϵ) =
1

(2π)d/2
e−

∥ϵ∥2
2 . (2.136)

Note that we have:

∇ϕ(ϵ) = −ϵ 1

(2π)d/2
e−

∥ϵ∥2
2 = −ϵϕ(ϵ). (2.137)

Therefore:

∇Fσ(θ) = ∇θEF (θ + σϵ)

= ∇θ

∫
Rd

F (θ + σϵ)ϕ(ϵ)dϵ

(a)
=

1

σd
∇θ

∫
Rd

F (ϵ′)ϕ

(
ϵ′ − θ

σ

)
dϵ′

=
1

σd
∇θ

∫
Rd

F (ϵ)ϕ

(
ϵ− θ

σ

)
dϵ

(b)
=

1

σd

∫
Rd

F (ϵ)∇θ

[
ϕ

(
ϵ− θ

σ

)]
dϵ (2.138)

72

=
1

σd

∫
Rd

F (ϵ)

(
− 1

σ

)(
−ϵ− θ

σ

)
ϕ

(
ϵ− θ

σ

)
dϵ

(c)
=

∫
Rd

F (σϵ′ + θ)

(
1

σ

)
ϵ′ϕ (ϵ′) dϵ′

= Eϵ
1

σ
F (θ + σϵ)ϵ = Eĝσ,ϵ(θ)

Where in (a), we do the change of variable ϵ′ = θ + σϵ , in (b) we exchange integral
and differentiation (as per Leibniz integral rule), which is possible in our case since F is
bounded per Assumption 5 (see [52] (24) for instance), and in (c) we use the reverse change
of variable as before (ϵ′ = ϵ−θ

σ
, so ϵ = σϵ′ + θ).

Variance: We now proceed with deriving the variance of such estimator: such result,
expressed in terms of the bound B on F , is, up to our knowledge, novel.

Lemma 7. Under Assumption 5, we have:

Eτ,ϵ∥ĝσ,ϵ(θ)−∇θFσ(θ)∥2 ≤
dB2

σ2
(2.139)

Proof. With ϵ ∼ N(0, Id×d), we have:

E∥ϵ∥2 = Eϵ⊤ϵ = E
d∑

i=1

u2
i =

d∑
i=1

Eu2
i = d. (2.140)

Using the definition of ĝσ,ϵ and Assumption 5, we have that:

∥ĝσ,ϵ∥2 ≤
B2

σ2
∥ϵ∥2 (2.141)

Therefore:
E∥ĝσ,ϵ∥2 ≤

B2

σ2
E∥ϵ∥2 = B2

σ2
d. (2.142)

We now use the bias-variance decomposition (in norm) (for a random variable X,
E∥X − EX∥2 = E∥X∥2 − ∥EX∥2):

For any θ ∈ Rd:

E∥ĝσ,ϵ(θ)−∇Fσ(θ)∥2 = E∥ĝσ,ϵ(θ)∥2 − ∥∇Fσ(θ)∥2 ≤ E∥ĝσ,ϵ(θ)∥2 =
dB2

σ2
(2.143)

73

Bias and Variance of the Single Perturbation, Single Rollout Policy Gradient
Estimator. We now proceed with proving the bias and variance of the policy gradient
estimator for a single perturbation ϵ, and a single rollout τ , defined below as:

ĝσ,ϵ,τ (θ) :=
1

σ
fτ (θ + σϵ)ϵ (2.144)

where the rollout τ is sampled for a given ϵ (i.e. one first samples some ϵ to obtain a
policy parameterized by θ + σϵ, and then, one samples a rollout τ from that policy).

Lemma 8 (Bias). The gradient estimator is unbiased:

Eϵ,τ ĝσ,ϵ,τ (θ) = ∇θFσ(θ) (2.145)

Proof. By the law of total probabilities, and using Assumption 6 we have:

Eϵ,τ ĝσ,ϵ,τ (θ) = EϵEτ |ϵĝσ,ϵ,τ (θ) = EϵEτ |ϵ
1

σ
fτ (θ + σϵ)ϵ

= Eϵ
1

σ

(
Eτ |ϵfτ (θ + σϵ)

)
ϵ

= Eϵ
1

σ
F (θ + σϵ)ϵ = ∇θFσ(θ) (2.146)

Where the last equality follows from Lemma 6.

Lemma 9 (Variance). Assume that Assumption 5 is verified, as well as Assumption 6. We
have, for any θ ∈ {θ0,θ 1

2
, ...,θT− 1

2
,θT}:

Eτ,ϵ∥ĝσ,ϵ,τ (θ)−∇Fσ(θ)∥2 ≤
Cd

σ2
+

dB2

σ2
(2.147)

Proof. For simplicity, let us fix θ ∈ {θ0,θ 1
2
, ...,θT− 1

2
,θT} and denote ĝσ,ϵ,τ := ĝσ,ϵ,τ (θ).

Eτ,ϵ∥ĝσ,ϵ,τ −∇Fσ(θ)∥2 (2.148)

=Eτ,ϵ∥ĝσ,ϵ,τ −
1

σ
F (θ + σϵ)ϵ∥2 + Eτ,ϵ∥

1

σ
F (θ + σϵ)ϵ−∇Fσ(θ)∥2

+ 2Eτ,ϵ⟨ĝσ,ϵ,τ −
1

σ
F (θ + σϵ)ϵ,

1

σ
F (θ + σϵ)ϵ−∇Fσ(θ)⟩

=Eτ,ϵ∥
1

σ
(fτ (θ + σϵ)ϵ− F (θ + σϵ)ϵ) ∥2 + Eτ,ϵ∥

1

σ
F (θ + σϵ)ϵ−∇Fσ(θ)∥2

+ 2Eτ,ϵ⟨
1

σ
fτ (θ + σϵ)ϵ− 1

σ
F (θ + σϵ)ϵ,

1

σ
F (θ + σϵ)ϵ−∇Fσ(θ)⟩

=
1

σ2
Eτ,ϵ|fτ (θ + σϵ)− F (θ + σϵ)|∥ϵ∥2 + Eτ,ϵ∥

1

σ
F (θ + σϵ)ϵ−∇Fσ(θ)∥2

+ 2Eϵ⟨Eτ |ϵ
1

σ
fτ (θ + σϵ)ϵ− 1

σ
F (θ + σϵ)ϵ,

1

σ
F (θ + σϵ)ϵ−∇Fσ(θ)⟩

74

(a)
=

1

σ2
Eτ,ϵ|fτ (θ + σϵ)− F (θ + σϵ)|∥ϵ∥2 + Eτ,ϵ∥

1

σ
F (θ + σϵ)ϵ−∇Fσ(θ)∥2

(b)

≤ 1

σ2
CEτ,ϵ∥ϵ∥2 + Eτ,ϵ∥

1

σ
F (θ + σϵ)ϵ−∇Fσ(θ)∥2

(c)

≤Cd

σ2
+

dB2

σ2
(2.149)

Where (a) follows from Lemma 8 (which implies Eτ |ϵ
1
σ
fτ (θ + σϵ)ϵ− 1

σ
F (θ + σϵ)ϵ = 0),

(b) follows from Assumption 6, and (c) follows from Lemma 7.

Proof of Lemma 5: Bias and Variance of the Averaged Gradient Estimator. We
can now finally proceed with proving the bias and variance of the full gradient estimator,
which is the averaging of the above single random perturbation and rollout gradient
estimator, over several random perturbations ϵ and rollouts τ . We recall Lemma 5 in its
full form, including the necessary notations, in Lemma 10 below:

Lemma 10 (i.e. Lemma 5 from subsection 2.11.4.3). Assume that we sample n random
directions {ϵi}ni=1 := {ϵ1, ..., ϵn} independently and identically distributed, and that for each
of those random directions ϵi, we sample we sample N rollouts {τ ϵij }Nj=1 := {τ ϵi1 , .., τ ϵiN }
independently and identically distributed, to obtain a final collection of rollouts {{τ ϵij }Nj=1}ni=1

, and to get N ×n gradient estimators ĝσ,ϵi,τϵij
, (i, j) ∈ [n]× [N], and to obtain the following

estimator, for any θ ∈ {θ0,θ 1
2
, ...,θT− 1

2
,θT}:

ḡσ,{ϵi}ni=1,{{τ
ϵi
j }Nj=1}ni=1

(θ) =
1

nN

n∑
i=1

N∑
j=1

ĝσ,ϵi,τϵij
(θ) (2.150)

Then , we have:

ḡσ,{ϵi}ni=1,{{τ
ϵi
j }Nj=1}ni=1

(θ) = ∇θFσ(θ) (2.151)

and:

E∥ḡσ,{ϵi}ni=1,{{τ
ϵi
j }Nj=1}ni=1

(θ)−∇θFσ(θ)∥2 ≤
Cd

Nσ2
+

dB2

nσ2
(2.152)

Proof. The unbiasedness follows from the linearity of expectation and the proof of Lemmas 8,
and the variance follows from the fact that using m i.i.d. samples of a random variable X
(for some integer m) divides the variance of the sample mean of X by m, in the previous
proof of 9.

75

2.11.5.3 Proof of Lemma 4

Such proof is, up to our knowledge, novel, and uses the bound B on F to derive a bound
on the Hessian ∇2Fσ(θ).

Proof. We have, with ϕ(ϵ) = 1

(2π)d/2
e−

∥ϵ∥2
2 (cf. Equation 2.138):

∇θFσ(θ) =
1

σd

∫
Rd

F (ϵ)∇θ

[
ϕ

(
ϵ− θ

σ

)]
dϵ (2.153)

And we also have, from Equation (2.137), and with ∂
∂ϵ

denoting the partial derivative
with respect to ϵ, and denoting for simplicity ϕ′′ the Hessian of ϕ:

ϕ′′(ϵ) =
∂

∂ϵ
(−ϵϕ(ϵ)) (2.154)

Therefore:

ϕ′′(ϵ) = −Iϕ(ϵ)− ϵ(−ϵ⊤ϕ(ϵ)) = (ϵϵ⊤ − I)ϕ(ϵ) (2.155)

In Equation (2.153) above, we can exchange differentiation and integral since the gradient
of the Gaussian function, which we denote by ϕ′(θ), is continuously differentiable and tends
to zero faster than any polynomial of θ, and F (θ) is bounded according to our assumptions
(and therefore grows to infinity not faster than a bounded polynomial of θ, cf. [52] p. (20)).
Therefore, we obtain: :

∇2
θFσ(θ) =

1

σd

∫
Rd

F (ϵ)∇2
θ

[
ϕ

(
ϵ− θ

σ

)]
dϵ

=
1

σd+2

∫
Rd

F (ϵ)ϕ′′
(
ϵ− θ

σ

)
dϵ

=
1

σd+2

∫
Rd

F (ϵ)

((
ϵ− θ

σ

)(
ϵ− θ

σ

)⊤

− I

)
ϕ

(
ϵ− θ

σ

)
dϵ

=
1

σ2

∫
Rd

F (θ + σϵ)
(
ϵϵ⊤ − I

)
ϕ (ϵ) dϵ. (2.156)

Therefore, we have, with ∥ · ∥s denoting the spectral norm:

∥∇2Fσ(θ)∥s = ∥
1

σ2

∫
Rd

F (θ + σϵ)
(
ϵϵ⊤ − I

)
ϕ (ϵ) dϵ∥s (2.157)

(a)

≤ 1

σ2

∫
Rd

∥F (θ + σϵ)
(
ϵϵ⊤ − I

)
∥sϕ (ϵ) dϵ (2.158)

76

=
1

σ2

∫
Rd

|F (θ + σϵ)|∥
(
ϵϵ⊤ − I

)
∥sϕ (ϵ) dϵ (2.159)

≤ 1

σ2

∫
Rd

B∥
(
ϵϵ⊤ − I

)
∥sϕ (ϵ) dϵ (2.160)

=
B

σ2

∫
Rd

∥ϵϵ⊤ − I∥sϕ (ϵ) dϵ (2.161)

(b)

≤ B

σ2

∫
Rd

(
∥ϵϵ⊤∥s + ∥I∥s

)
ϕ (ϵ) dϵ (2.162)

(c)
=

B

σ2

∫
Rd

(
∥ϵ∥22 + 1

)
ϕ (ϵ) dϵ (2.163)

=
B

σ2

[
(E∥ϵ∥22) +

(∫
Rd

ϕ(ϵ)dϵ

)]
(2.164)

=
B

σ2
[d+ 1] (2.165)

=
(d+ 1)B

σ2
. (2.166)

Where (a) follows from Jensen inequality for expectation (and since any norm, including
the spectral norm, is convex) , and where (b) follows from the triangular inequality. And
where (c) follows from the fact that the spectral norm of ϵϵ⊤ is ∥ϵ∥22 since the Singular
Value Decomposition of ϵϵ⊤ is ϵϵ⊤ = ϵ

∥ϵ∥2∥ϵ∥
2
2

ϵ⊤

∥ϵ∥2 (therefore, the largest singular value of
ϵϵ⊤, which is the spectral norm by definition, is equal to ∥ϵ∥22). We can now use Lemma
1.2.2 in [112] to relate such bound on the Hessian to the smoothness constant of Fσ.

2.11.5.4 Proof of Theorem 2: Final convergence rate

We can now use the above results into the general framework from [152], with some additional
modifications to adapt their proof to our case of rewards maximization (and not function
minimization), and to our specific proximal term, which is the indicator function of the ℓ0
pseudo-ball of radius k (for which the Euclidean projection onto it is the hard-thresholding
operator), as well as a few modifications where we use our boundedness assumption on F
(Assumption 5) instead of Assumption 1(ii) in [152].

Proof. Let F−
σ (θ) := −Fσ(θ), then we have

max
∥θ∥0≤k

Fσ(θ) = min
∥θ∥0≤k

F−
σ (θ) (2.167)

Note that the nonconvex optimization problem min∥θ∥0≤k F
−
σ (θ) can be reformulated as

an alternative nonconvex optimization problem, wherein a nonsmooth, nonconvex indicator
function serves as a regularization term:

min
∥θ∥0≤k

F−
σ (θ) = min

θ∈Rd
F−
σ (θ) + r(θ) where r(θ) :=

{
0, if ∥θ∥0 ≤ k

+∞, otherwise

77

Note that r(θ) is a nonconvex lower-semicontinuous function (cf. the Introduction
of [152] for instance).

For simplification, denote by gt the averaged gradient estimator of ∇θF
−
σ (θt) at time

step t, i.e.,

gt = −ḡσ,{ϵi}ni=1,{{τ
ϵi
j }Nj=1}ni=1

(θt). (2.168)

Then the update rule of θt+1 is equivalent to

θt+1 =trunc (θt − αgt)

∈ argmin
θ∈Rd

{
r(θ) +

1

2α
∥θ − (θt − αgt)∥2

}
=argmin

θ∈Rd

{
r(θ) + ⟨gt,θ − θt⟩+

1

2α
∥θ − θt∥2

}
(2.169)

Then we have, with ∂̂ denoting the Fréchet derivative (see [48, 152] for more details, in
particular the proof of Theorem 2 in [152].):

− (gt +
1

α
(θt+1 − θt)) ∈ ∂̂r(θt+1), ∇F−

σ (θt+1)− (gt +
1

α
(θt+1 − θt)) ∈ ∂̂(F−

σ + r)(θt+1),

(2.170)

r(θt+1) + ⟨gt,θt+1 − θt⟩+
1

2α
∥θt+1 − θt∥2 ≤ r(θt) + ⟨gt,θt − θt⟩+

1

2α
∥θt − θt∥2 = r(θt)

According to Lemma 4, the spectrum norm of Hessian matrix of Fσ is bounded by L := (d+1)B
σ2 ,

which also implies that F−
σ is L smooth. Then we have,

F−
σ (θt+1) ≤ F−

σ (θt) +
〈
∇F−

σ (θt),θt+1 − θt

〉
+

L

2
∥θt+1 − θt∥2. (2.171)

Then we have〈
gt −∇F−

σ (θt),θt+1 − θt

〉
+

1

2
(
1

α
− L)∥θt+1 − θt∥2 ≤ (F−

σ + r)(θt)− (F−
σ + r)(θt+1).

(2.172)

By Young’s inequality,

1

2
(
1

α
− L)∥θt+1 − θt∥2 ≤(F−

σ + r)(θt)− (F−
σ + r)(θt+1) +

1

2L
∥gt −∇F−

σ (θt)∥2

+
L

2
∥θt+1 − θt∥2. (2.173)

Summing up the above inequality over time steps t = 0, . . . , T − 1, we have(
1

2α
− L

) T−1∑
t=0

∥θt+1 − θt∥2 ≤(F−
σ + r)(θ0)− (F−

σ + r)(θT−1) +
1

2L

T−1∑
t=0

∥gt −∇F−
σ (θt)∥2

78

≤(F−
σ + r)(θ0)− (F−

σ + r)(θT−1) +
1

2L

T−1∑
t=0

∥gt −∇F−
σ (θt)∥2

=F−
σ (θ0)− F−

σ (θT−1) +
1

2L

T−1∑
t=0

∥gt −∇F−
σ (θt)∥2

≤2B +
1

2L

T−1∑
t=0

∥gt −∇F−
σ (θt)∥2, (2.174)

where the equality is due to the definition of the indicator function r(θ) and since θ0

and θT−1 are k-sparse, and the last inequality is due to Assumption 5. According to
Eq.equation 2.172, we also have:

2

α

〈
gt −∇F−

σ (θt+1),θt+1 − θt

〉
+

1− αL

α2
∥θt+1 − θt∥2

≤2 ((F−
σ + r)(θt)− (F−

σ + r)(θt+1))

α
− 2

α

〈
∇F−

σ (θt+1)−∇F−
σ ,θt+1 − θt

〉
. (2.175)

Since 2
〈
gt −∇F−

σ (θt+1),
1
α
(θt+1 − θt)

〉
= ∥gt − ∇F−

σ (θt+1) +
1
α
(θt+1 − θt)∥2 − ∥gt −

∇−
σ (θt+1)∥2 − 1

α2∥θt+1 − θt∥2, we have :

∥gt −∇F−
σ (θt+1) +

1

α
(θt+1 − θt)∥2

≤∥gt −∇−
σ (θt+1)∥2 +

1

α2
∥θt+1 − θt∥2 −

1− αL

α2
∥θt+1 − θt∥2

+
2 ((F−

σ + r)(θt)− (F−
σ + r)(θt+1))

α
− 2

α

〈
∇F−

σ (θt+1)−∇F−
σ ,θt+1 − θt

〉
≤2∥gt −∇F−

σ (θt)∥2 + 2∥∇−
σ (θt)−∇−

σ (θt+1)∥2 +
L

α
∥θt+1 − θt∥2

+
2 ((F−

σ + r)(θt)− (F−
σ + r)(θt+1))

α
− 2

α

〈
∇F−

σ (θt+1)−∇F−
σ ,θt+1 − θt

〉
≤2∥gt −∇F−

σ (θt)∥2 +
2 ((F−

σ + r)(θt)− (F−
σ + r)(θt+1))

α
+ (2L2 +

3L

α
)∥θt+1 − θt∥2,

(2.176)

where the second inequality is due to Young’s inequality and the last inequality is due
to the smoothness of the gradient. Summing up the above inequality over time steps
t = 0, . . . , T − 1, we have :

T−1∑
t=0

∥gt −∇F−
σ (θt+1) +

1

α
(θt+1 − θt)∥2

≤2
T−1∑
t=0

∥gt −∇F−
σ (θt)∥2 +

2 ((F−
σ + r)(θ0)− (F−

σ + r)(θT−1))

α

+ (2L2 +
3L

α
)
T−1∑
t=0

∥θt+1 − θt∥2

79

≤2
T−1∑
t=0

∥gt −∇F−
σ (θt)∥2 +

4B

α
+

2

α2

T−1∑
t=0

∥θt+1 − θt∥2, (2.177)

where the last inequality is due to Assumption 5 and setting α = c
L
< 1

2L
. Combing the

above inequality with Equation equation 2.174 and Equation equation 2.170, we have :

E[dist(0, ∂̂(F−
σ + r)(θT))

2]

≤ 1

T

T−1∑
t=0

E
[
∥gt −∇F−

σ (θt+1) +
1

α
(θt+1 − θt)∥2

]

≤ 2

T

T−1∑
t=0

E∥gt −∇F−
σ (θt)∥2 +

4B

Tα
+

2

α2T

T−1∑
t=0

∥θt+1 − θt∥2

≤ 2

T

T−1∑
t=0

E∥gt −∇F−
σ (θt)∥2 +

4B

Tα
+

2

α2T

(
4B

1
α
− 2L

+
1

L
α
− 2L2

T−1∑
t=0

E∥gt −∇F−
σ (θt)∥2

)

=
2c(1− 2c) + 2

c(1− 2c)

1

T

T−1∑
t=0

E∥gt −∇F−
σ (θt)∥2 +

12− 8c

1− 2c

B

αT
(2.178)

We can now plug the result we obtained in Lemma 10 in the result above, to obtain:

E
[
dist

(
0, ∂̂

(
−Fσ (θT) + 1ℓ0(k)(θT)

))2]
≤ ϵ2,

Using Jensen inequality and the fact that the square-root function is concave, we obtain
Theorem 2.

80

Chapter 3

Iterative Hard Thresholding over Sparse
Support-Preserving Sets

3.1 Introduction

In sparse optimization, directly enforcing sparsity with the ℓ0 pseudo-norm has several
advantages over its convex relaxation counterpart. In compressive sensing for instance [55],
one may seek to recover an unknown vector, which sparsity level is known to be at most k.
Similarly, in portfolio optimization, due to transaction costs, one may seek to ensure hard
constraints on the maximum number of assets invested in [26,49]. However, in several use
cases, one may also seek to enforce additional constraints, such as, for instance, a budget
constraint in the case of portfolio optimization, which can be enforced through an extra ℓ1
constraint, as in [138]. As another example, in sparse non-negative matrix factorization,
when estimating the hidden components, one seeks to enforce at the same time a norm
constraint and a sparsity constraint [73]. The problem of ℓ0 empirical risk minimization
(ERM) with additional constraints can be formulated as follows, where R is an empirical
risk function, Γ ⊆ Rd denotes a convex constraint set, and ∥ · ∥0 denotes the ℓ0 pseudo-norm
(number of non-zero components of a vector):

min
w∈Rp

R(w), s.t. ∥w∥0 ≤ k and w ∈ Γ. (3.1)

In the literature, several algorithms have been developed to address such a problem with
mixed constraints, but they typically require the existence of a closed form for the projection
onto the mixed constraint, and/or their convergence guarantees are only local, which makes
it difficult to estimate the sub-optimality of the output of the algorithm. More precisely, on
one hand, some works provide convergence analyses for variants of a (non-convex) projected
gradient descent, explicitly for mixed sparse constraints [14, 97, 103, 120], or for general
proximal terms (which encompasses our mixed constraints) ([4,22,23,43,56,67,87,152–155]),
but such analyses are only local. On the other hand, several existing works on Iterative Hard
Thresholding (IHT) provide global guarantees on sub-optimality gap [46,76,88,116,133], but
they do not apply to the mixed constraint case we consider. In between the two approaches,

81

one can also find [9] and [90] which, in the deterministic case, give global guarantees for
general non-convex constraints or thresholding operators, but which do not provide explicit
convergence guarantees for the particular mixed constraint setting that we consider: their
rates depend on some constants (the relative concavity or the local concavity constant) for
which, up to our knowledge, an explicit form is still unknown for the mixed constraints
we consider. We present a more detailed review of related works in Section 3.2, and an
overview of them in Table 3.1. To fill this gap, we focus on solving problem 3.1 in the case
where Γ belongs to a general family of support-preserving sets, which encompasses many
usual sets encountered in the literature. As will be described in more detail in Section 3.3,
such sets are convex sets for which the projection of a k-sparse vector onto them gets its
support preserved, such as for instance ℓp norm balls (for p ≥ 1), or a broader family of
sign–free convex sets described for instance in [97] and [14].

Adapted to the properties of such constraints, we propose a new variant of IHT, with a
two-step projection operator, which, as a first step, identifies the set S of coordinates of the
top k components of a given vector and sets the other components to 0 (hard-thresholding),
and as a second step projects the resulting vector onto Γ. This two-step projection can offer
a simpler alternative to Euclidean projection onto the mixed constraint in the cases where
there is a closed form for the latter projection, and handle the cases where there is not. We
then provide global sub-optimality guarantees without system error for the objective value,
for such an algorithm as well as its stochastic and zeroth-order variants, under the restricted
strong-convexity (RSC) and restricted smoothness (RSS) assumptions, in Theorems 4, 7,
and 9. Key to our analysis is a novel extension of the three-point lemma to such non-convex
setting with mixed constraints, which also allows, as a byproduct, to simplify existing
proofs of convergence in objective value for IHT and its variants. In the zeroth-order case,
such technique also allows to obtain, up to our knowledge, the first convergence in risk
result without system error for a zeroth-order hard-thresholding algorithm. Additionally,
our results highlight a compromise between sparsity and sub-optimality gap specific to the
additional constraints setting: through a free parameter ρ, one can obtain smaller upper
bounds in terms of risk but at the cost of relaxing further the sparsity level of the iterates,
or, alternatively, enforce sparser iterates but at the cost of a larger upper bound on the risk.

Contributions. We summarize the main contributions of our paper as follows:

1. We present a variant of IHT to solve hard sparsity problems with additional support-
preserving constraints, using a novel two-step projection operator.

2. We describe a novel extension of the three-point lemma to such constraint which
allows to simplify existing proofs for IHT and to provide global convergence guarantees
in objective value without system error for the algorithm above, in the RSC/RSS
setting, highlighting a novel trade-off between sparsity of iterates and sub-optimality
gap in such mixed constraints setting.

3. We extend the above algorithm to the stochastic and zeroth-order optimization
settings, obtaining similar global convergence guarantees in objective value (without
system error) for such mixed constraints setting. In the zeroth-order case, this also
provides, up to our knowledge, the first convergence result in objective value without

82

system error for a zeroth-order hard-thresholding algorithm (with or without extra
constraints).

Table 3.1: Comparison of results for Iterative Hard Thresholding with/without additional
constraints. 1 S: symmetric convex sets being sign-free or non-negative [97], A: sets verifying
Assumption 9. 2 If a paper reports both ∥w− w̄∥ and R(w)−R(w̄), we report only the latter. T̂ :
time index of the w returned by the method (e.g. T̂ = argmint∈[T]R(wt)). w̄: k̄-sparse vector
in Γ. ∆: System error (non-vanishing term which depends on the gradient at optimality (e.g.
Ei∥∇Ri(w̄)∥, (see corresponding references))). 4: κs =

Ls
νs

and κs′ =
Ls′
νs

(cf. corresponding refs.
for defs. of s and s′). 3 SM: Lipschitz-smooth, D: Deterministic. S: Stochastic, Z: Zeroth-Order, L:
Lipschitz continuous. 5: see also Thm. 3, 6: see also Thm. 6.

Reference Γ1 Convergence2 k Setting3

[76]5 Rd R(wT̂) ≤ R(w̄) + ε Ω(κ2
sk̄)

D, RSS,
RSC

[116] Rd E∥wT̂ − w̄∥ ≤ ε+O (∆) Ω(κ2
sk̄)

S, RSS,
RSC

[88] Rd ER(wT̂) ≤ R(w̄) + ε+O(∆) Ω(κ2
sk̄)

S, RSS,
RSC

[163]6 Rd ER(wT̂) ≤ R(w̄) + ε Ω(κ2
sk̄)

S, RSS,
RSC

[46] Rd E∥wT̂ − w̄∥ ≤ ε+O (∆) +O(µ) Ω(κ4
s′ k̄)

S, Z,
RSS’,
RSC

[97], [14] Γ ∈ S local convergence - D, SM

[103]
ℓ∞ ball
around

0
local convergence - S, Z, L

IHT-TSP (Thm.
4) Γ ∈ A R (wT̂) ≤ (1 + 2ρ)R(w̄) + ε Ω

(
κ2
sk̄
ρ2

) D, RSS,
RSC

HSG-HT-TSP
(Thm. 7) Γ ∈ A ER(wT̂) ≤ (1 + 2ρ)R(w̄) + ε Ω

(
κ2
sk̄
ρ2

) S, RSS,
RSC

HZO-HT
(Thm. 8) Rd E[R(wT̂)−R(w̄)] ≤ ε+O(µ) Ω(κ2

s′ k̄)
Z, RSS’,

RSC
HZO-HT-TSP

(Thm. 9) Γ ∈ A ER(wT̂) ≤ (1+2ρ)R(w̄)+ε+O(µ) Ω
(

κ2
s′ k̄

ρ2

) Z, RSS’,
RSC

3.2 Related Works

Below we present a more detailed review of the related works.

83

3.2.1 Local Guarantees for Combined Constraints

Among the works considering optimization over the intersection of the ℓ0 pseudo-ball
of radius k and a set Γ, [103] analyze the convergence of a first-order and zeroth-order
stochastic algorithm with a weighted ℓ0 group norm constraint (which generalizes the ℓ0
norm), combined with an ℓ∞ ball constraint. [120] provide a deterministic algorithm which
can tackle extra positivity constraints. [97] and [14] analyze the convergence of variants of
hard-thresholding in the deterministic case, with extra constraints that are symmetric and
sign-free or positive. Other line of works such as [4, 22, 23, 43, 56, 67, 87, 152–155] have a
general approach, and analyze the convergence of general proximal algorithms, for composite
problems of the form minw R(w) + h(w) where h is a more general non-convex regularizer
which can include the ℓ0 constraint combined with an additional constraint, as long as the
closed form for the projection onto the mixed constraint is known (or an approximation of
it in the case of [67]). However, all of these works only provide guarantees of convergence
towards a critical point, or at best, a local optimum. We provide an overview of those
works in Table 3.1. More details about algorithms with local convergence specialized to ℓ0
optimization can also be found in Table 1 from [42].

3.2.2 Global Guarantees for IHT and RSC Functions

On the other hand, in the case of restricted strongly convex (RSC) and restricted smooth
(RSS) functions, existing approximate global guarantees for the IHT algorithm do not
apply to problems with such combined constraints. Indeed, several works have considered
global convergence guarantees for IHT in various settings: the full gradient (deterministic)
setting (IHT [76]), the stochastic setting [88, 116, 133], and the zeroth-order setting [46].
However, they do not address the case where the extra constraint Γ is added to the original
sparsity constraint. The works of [9,90] tackle respectively general non-convex thresholding
operators, and general non-convex constraints, in the full gradient (deterministic) setting
but however they do not provide explicit convergence rates for the particular type of sets
that we consider in this paper: their rates depend on some constants (the relative concavity
or the local concavity constant) for which, up to our knowledge, an explicit form is still
unknown for the sets we consider.

3.3 Preliminaries

Throughout this paper, we adopt the following notations. For any w ∈ Rd, ΠΓ(w)
denotes a Euclidean projection of w onto Γ, that is ΠΓ(w) ∈ argminz∈Γ ∥w − z∥2, and
wi denotes the i-th component of w. B0(k) denotes the ℓ0 pseudo-ball of radius k, i.e.
B0(k) = {w ∈ Rd : ∥w∥0 ≤ k}, with ∥ · ∥0 the ℓ0 pseudo-norm (i.e. the number of nonzero
components of a vector). Hk denotes the Euclidean projection onto B0(k), also known as
the hard-thresholding operator (which keeps the k largest (in magnitude) components of a
vector, and sets the others to 0 (if there are ties, we can break them e.g. lexicographically)).
∥ · ∥p denotes the ℓp norm for p ∈ [1,+∞), and ∥ · ∥ the ℓ2 norm (unless otherwise specified).

84

[n] denotes the set {1, ..., n} for n ∈ N∗. For any S ⊆ [d], |S| denotes its number of elements.
For any w ∈ Rd, supp(w) denotes its support, i.e. the set of coordinates of its non-zero
components. We also introduce below the usual assumptions on R for IHT proofs, i.e. RSC
([76,88,96,108,116,133,157]), and RSS ([76,88,157]).

Assumption 7 ((νs, s)-RSC). R is νs restricted strongly convex with sparsity parameter s,
i.e. it is differentiable, and there exists a generic constant νs such that for all (x,y) ∈ Rd

with ∥x− y∥0 ≤ s:

R(y) ≥ R(x) + ⟨∇R(x),y − x⟩+ νs
2
∥x− y∥2 (3.2)

Assumption 8 ((Ls, s)-RSS). R is Ls restricted smooth with sparsity level s, i.e. it is
differentiable, and there exists a generic constant Ls such that for all (x,y) ∈ Rd with
∥x− y∥0 ≤ s:

R(y) ≤ R(x) + ⟨∇R(x),y − x⟩+ Ls

2
∥x− y∥2 (3.3)

We then define the notion of support-preserving set that we will use throughout the
paper. It essentially requires that projecting any k-sparse vector w onto Γ preserves its
support. That is, the convex constraint Γ should be compatible with the sparsity level
constraint ∥w∥0 ≤ k.

Assumption 9 (k-support-preserving set). Γ ⊆ Rd is k-support-preserving , i.e. it is
convex and for any w ∈ Rd such that ∥w∥0 ≤ k, supp(ΠΓ(w)) ⊆ supp(w).

Remark 10. Below we present some examples of usual sets that also verify Assumption 9
(see Section 3.3.1 for a proof of such statements):

• Elementwise decomposable constraints, such as box constraints of the form {w ∈ Rd :
∀i ∈ [d], li ≤ wi ≤ ui}.

• Group-wise separable constraints where the constraint on each group is k-support-
preserving (such as our constraints in Section 3.8 for the index tracking problem).

• Sign-free convex sets [14,97] (def. in Section 3.3.1), e.g. ℓq norm-balls.

3.3.1 Proof of Remark 10

Before proceeding with the proof of Remark 10, we recall the definition of sign-free convex
sets from [97] and [14] below. Essentially, sign-free convex sets are convex sets that are
closed by swapping the sign of any coordinate.

Definition 12 ([97], [14]). A convex set Γ is sign-free if for all y ∈ {−1, 1}d and for all
x ∈ Γ, x ⊙ y ∈ Γ, where ⊙ denotes the element-wise vector multiplication (Hadamard
product for vectors).

We now proceed with the proof of Remark 10.

85

Proof of Remark 10. It is easy to show that any elementwise decomposable constraint
such as box constraint is support-preserving (as projection can be done component-wise,
independently). Similarly, for group-wise separable constraints where the constraint on
each group is k-support-preserving (such as the constraint for the index tracking problem
in our Section 3.8), for a k-sparse vector x ∈ Rd, one can project each group of coordinates
independently, and each of such projection will have its support preserved (since each such
group of coordinates also contains less than k non-zero elements, i.e. they are k-sparse).
Therefore, we analyze in more detail the case of sign-free convex sets. Let Γ be a sign-
free convex set, and let x ∈ Rd be a k-sparse vector. Define z = ΠΓ(x) and assume that
supp(z) ̸⊆ supp(x). This implies that there exist some non-empty set of coordinates S ⊆ [d],

such that for all i ∈ S: zi ̸= 0 and xi = 0. Define z′ such that z′k =

{
−zk if k ∈ S

zk otherwise
. Since

Γ is sign-free, z′ ∈ Γ. Now, define z′′ such that z′′k =

{
0 if k ∈ S

zk if otherwise
. Since Γ is convex

and since z′′ = 1
2
z′ + 1

2
z, we have z′′ ∈ Γ. Now, we have:

∥x− z′′∥22 =
d∑

k=1

(xk − z′′k)
2 =

∑
k∈[d]\S

(xk − zk)
2

<
∑

k∈[d]\S

(xk − zk)
2 +

∑
k∈S

(xk − zk)
2 =

d∑
k=1

(xk − zk)
2 = ∥x− z∥22 (3.4)

Therefore, we encounter a contradiction since we have defined z = ΠΓ(x), and therefore,
our assumption supp(z) ̸⊆ supp(x) is wrong, which means that supp(z) ⊆ supp(x).

3.4 Deterministic Case

3.4.1 Algorithm

Γ

×w

×
Π̄k

Γ(w)
×Hk(w)

Figure 3.1: Support-preserving set
and two-step projection (d = 2, k =
1).

Two-Step Projection. In all the algorithms of
this paper, we will make use of a two-step projection
operator (TSP), which is different in general from
the usual Euclidean projection (EP), in order to ob-
tain, from an arbitrary vector w ∈ Rd, a vector in
w ∈ B0(k) ∩ Γ. We consider such a TSP instead
of EP since it enables the derivation a variant of
three-point lemma (Lemma 13) which can handle
our specific non-convex mixed constraints, and is key
to obtaining the convergence analyses we present in
Sections 3.4 and 3.6. In addition, the TSP can be
more intuitive and efficient to implement than EP
(see Section 3.8.2.1 for more discussions about TSP vs

86

EP). The TSP procedure, which we denote by Π̄k
Γ, is

as follows: we first project w onto B0(k) through the
hard-thresholding operator Hk, to obtain a k-sparse
vector vk = Hk(w). Then, we project vk onto Γ , to obtain a final vector wS = ΠΓ(vk),
where S = supp(vk). Note that consequently, the obtained wS is not necessarily the EP
of w onto B0(k) ∩ Γ, that is, we do not necessarily have wS = ΠB0(k)∩Γ(w). However,
when Assumption 9 is verified, we have wS ∈ B0(k) ∩ Γ (since, because of Assumption 9,
supp(wS) ⊆ supp(vk) and hence ∥wS∥0 ≤ ∥vk∥0 ≤ k), therefore each iteration remains
feasible in the constraint. We illustrate such a two-step projection on Figure 3.1. We
now present our full algorithm in the case where R is a deterministic function without
further knowledge of its structure. It is similar to the usual (non-convex) projected gradient
descent algorithm, that is, a gradient update step followed by a projection step, except that
instead of projecting onto Γ ∩ B0(k) using the Euclidean projection, we obtain a vector
wk ∈ Γ ∩ B0(k) through the two-step projection method described above. We describe the
algorithm in Algorithm 7 below.

Algorithm 7: Deterministic IHT with extra constraints (IHT-TSP)
Input: w0: initial value, η: learning rate, T : number of iterations
for t = 1 to T do

wt ← Π̄k
Γ(wt−1 − η∇R(wt−1));

end
Output: wT

Remark 11. In the case where Γ is a symmetric sign-free convex set (we refer to [97]
for the definition of such sets, which include for instance any ℓp norm constraint set for
p ∈ [1,+∞)), then the two-step projection is actually the closed form of an Euclidean
projection onto the mixed constraint Γ ∩ B0(k) (see Theorem 2.1 from [97]). Therefore, in
such cases, Algorithm 7 is identical to a vanilla (non-convex) projected gradient descent
algorithm (for which up to now there was still no global convergence guarantees in such a
mixed constraints setting in the literature).

3.4.2 Convergence Analysis

Before proceeding with the convergence analysis, we first present below a variant of the
usual three-point lemma from constrained convex optimization, which plays a key role in
our proofs. The common three-point lemma for a projection onto a convex set E relates
the distance between a point w ∈ Rd, its projection ΠE(w), and any vector w̄ from the set
E , through the relation ∥w − w̄∥2 ≥ ∥ΠE(w)−w∥2 + ∥ΠE(w)− w̄∥2. Such a three-point
lemma is used for instance in a general Bregman divergence form to prove convergence
of mirror descent for smooth functions in [27]. Indeed, although proving the convergence
of projected gradient descent in the non-smooth case only needs the non-expansivity of
projection onto a convex set, the proof for the smooth case usually needs such a three-point
lemma, which can be seen as a stronger version of non-expansivity. However, due to the
non-convexity of the ℓ0 pseudo-ball, the convex three-points lemma above does not hold.

87

Fortunately, building upon Lemma 4.1 from [90], we can obtain a three-point lemma for
projection onto the ℓ0 pseudo-ball.

Lemma 11 (ℓ0 three-point lemma, proof in Section 3.5.1.2). Consider w, w̄ ∈ Rp with
∥w̄∥0 ≤ k̄. For any k̄ ≤ k, with β := k̄

k
, it holds that:

∥Hk(w)−w∥2 ≤ ∥w − w̄∥2 −
(
1−

√
β
)
∥Hk(w)− w̄∥2. (3.5)

Note that if k ≫ k̄, β tends to 0, and therefore we approach the usual three-point
lemma from convex optimization. This is coherent with the literature on IHT, in which
relaxing the sparsity degree (i.e. considering some k ≫ k̄) is known to make the problem
easier to solve (see also Remark 12 below). In addition, the inequality in Lemma 11 is tight
with respect to the coefficient

√
β, as illustrated by the following lemma.

Lemma 12 (Tightness, proof in Section 3.5.1.3). Consider an arbitrary pair of integers
(k, k̄) with k > k̄ and an arbitrary scalar ρ ∈ (0, 1). Then there exist w and w̄ with
∥w∥0 = k and ∥w̄∥0 = k̄ such that the following holds:

∥w −Hk(w)∥2 > ∥w − w̄∥2 − ∥Hk(w)− w̄∥2 + ρ

√
k̄

k
∥Hk(w)− w̄∥2. (3.6)

Lemma 11 allows us to prove the following rate for convergence in risk of IHT without
system error, which appeared first in [76]. Our proof, however, is simpler than the original
proof from [76], as we will discuss below.

Theorem 3. (Equivalent to Thm. 1 from [76], see also Thm. 3.1 from [90]. Proof in
Section 3.5.2.1) Assume that Γ = Rd. Suppose that Assumption 7 and Assumption 8 hold.
Let s = 2k. Let η = 1

Ls
. Let w̄ be an arbitrary k̄-sparse vector. Suppose that k ≥ 4κ2

sk̄ with
κs :=

Ls

νs
. Then for any ε > 0, the iterate of IHT satisfies R(wt) ≤ R(w̄) + ε if

t ≥
⌈
2Ls

νs
log

(
(Ls − νs)∥w0 − w̄∥2

2ε

)⌉
+ 1.

Proof Sketch. Using the Ls-RSS of R and some algebraic manipulations, and denoting
gt = ∇R(wt) and vt := Hk(wt−1 − 1

Ls
gt−1) (= wt when Γ = Rd), we have:

R(vt) ≤ R(wt−1) +
Ls

2
∥vt −wt−1 +

1

Ls

gt−1∥2 −
1

2Ls

∥gt−1∥2

(a)

≤R(wt−1) +
Ls

2
∥w̄ −wt−1 +

1

Ls

gt−1∥2 −
Ls

2
(1−

√
β)∥vt − w̄∥2 − 1

2Ls

∥gt−1∥2

(b)

≤R(w̄) +
Ls − νs

2
∥wt−1 − w̄∥2 − Ls

2
(1−

√
β)∥vt − w̄∥2, (3.7)

where (a) follows from Lemma 11, and in (b) we used the RSC of R with some rearrangements.
The proof for Theorem 3 can be concluded with telescopic sum arguments.

88

Remark 12 (Necessity of k = Ω(k̄κ2)). Note that the relaxation of k to Ω(k̄κ2) in Theorem 3
is unimprovable for IHT, as we detail in Section 3.5.3 with a counter-example, similar to but
slightly simpler than the counter-example from Section E.1 in [6]). Therefore, we highlight
that all of the following results in this paper will also be expressed in terms of such a relaxed
k: this is a fundamental limitation of IHT, and not a limitation of our proof techniques.
More details on such relaxation (which is widespread amongst IHT-type algorithms as can
be seen in Table 3.1) and how it is a natural way to obtain global guarantees for sparsity
enforcing algorithms, can be found in [5,6,90].

Comparison with Previous Proofs. Perhaps the original and most widespread proof
framework for convergence in risk of IHT without system error is the one from [76] Theorem
1. Their proof framework is also used for instance in some stochastic extensions of IHT (see
Theorem 2 in [163], or Theorems 1 and 2 in [124], even if [124] assume R to have a k̄-sparse
minimizer which is a strong requirement). The proof from [76] uses specific properties of the
hard-thresholding operator to carefully bound the magnitude of the components of ∇R(wt)
on various sets of coordinates (the support of wt, wt+1, and w̄, and some intersections and
unions of such sets). Using such techniques, however, makes it difficult to derive proofs of
IHT in other settings (stochastic, zeroth-order, extra constraints). However, recently, [90]
provided a proof of convergence for IHT which avoids such complex considerations about
the support sets of the gradient, using their Lemma 4.1 on the relative concavity of the
hard-thresholding operator. Our work goes in a similar line of work, but we build upon
their Lemma 4.1 to prove a three-points lemma for hard-thresholding (our Lemma 11)
which allows us to obtain simple proof frameworks also for the stochastic case (retrieving
the previous from [163]) and the zeroth-order case (obtaining a new result). But perhaps
more importantly, we are able to extend our Lemma 11 to the case with extra constraints
Γ verifying Assumption 9 (Lemma 13 below). Such a lemma will allows us to obtain
convergence results in the new extra constraints setting that we consider in this paper
(providing three new results, in the deterministic, stochastic, and zeroth-order case). It
relates together the four points involved in the two step projection (w ∈ Rd, Hk(w), Π̄k

Γ(w),
and w̄ ∈ Γ ∩ B0(k)).

Lemma 13 (Constrained ℓ0-Three-Point, proof in Section 3.5.1.4). Suppose that Assump-
tion 9 holds for a set Γ. Consider w, w̄ ∈ Rp with ∥w̄∥0 ≤ k̄ and w̄ ∈ Γ. Then the following
holds for any k > k̄:

∥Π̄k
Γ (w)−w∥2 ≤ ∥w − w̄∥2 − ∥Π̄k

Γ (w)− w̄∥2 +
√
β∥Hk(w)− w̄∥2, with β :=

k̄

k
.

Equipped with such lemma, we can now present the convergence analysis of Algorithm 7
below, using the assumptions from Section 3.3, and we will describe how the results give rise
to a trade-off between the sparsity of the iterates and the tightness of the sub-optimality
bound, specific to our mixed constraints setting.

Theorem 4 (Proof in Section 3.5.2.2). Suppose that Assumption 7, 8, and 9 hold, and that
R is non-negative (without loss of generality). Let s = 2k, η = 1

Ls
, and w̄ be an arbitrary

89

k̄-sparse vector. Let ρ ∈ (0, 1
2
] be an arbitrary scalar. Suppose that k ≥ 4(1−ρ)2L2

s

ρ2ν2s
k̄. Then for

any ε > 0, for T ≥
⌈
Ls

νs
log
(

(Ls−νs)∥w0−w̄∥2
2ε(1−ρ)

)⌉
+ 1 = O(κs log(

1
ε
)), the iterates of IHT-TSP

satisfy:
min
t∈[T]

R (wt) ≤ (1 + 2ρ)R(w̄) + ε. (3.8)

Further, if w̄ is a global minimizer of R over B0(k) := {w : ∥w∥0 ≤ k}, then, with ρ = 0.5
in the expressions of k and T above: mint∈[T] R (wt) ≤ R(w̄) + ε.

Proof Sketch. To obtain the proof for general Γ, we reiterate a similar proof as for Theorem 3,
but this time, instead of Lemma 11, we use our more general Lemma 13, adapted to general
Γ and to our two-step projection technique, to obtain (see the Proof Sketch of Thm. 3 for
the definition of vt):

R(wt) ≤ R(w̄) +
Ls − νs

2
∥wt−1 − w̄∥2 − Ls

2
∥wt − w̄∥2 + Ls

2

√
β∥vt − w̄∥2. (3.9)

Finally, taking a convex combination of equations 3.7 (×ρ) and 3.9 (×(1−ρ)) for ρ ∈ (0, 0.5],
using the bound ∥wt − w̄∥2 ≤ ∥vt − w̄∥2 (non-expansiveness of convex projection onto Γ),
and carefully tuning k depending on ρ (resulting in our final trade-off between sparsity and
optimality), we can fall back to a telescopic sum and conclude the proof.

Remark 13. Theorem 4 therefore provides a global convergence guarantee in objective value.
However, contrary to usual guarantees for IHT algorithms under RSS/RSC conditions
(which are bounds of the form R(wt) ≤ R(w̄) + ε for some t) , our bound is of the form
R (wt) ≤ (1 + 2ρ)R(w̄) + ε. There is a trade-off about the choice of ρ ∈ (0, 0.5]. On one
hand, ρ → 0 is preferred in view of the RHS of above bound. On the other hand, the
sparsity-level relaxation condition k ≥ 4(1−ρ)2L2

s

ρ2ν2s
k̄ prefers ρ → 0.5. We illustrate such a

trade-off on some synthetic experiments in Section 3.8.1.

3.5 Proofs for Deterministic Optimization

3.5.1 Proof of Lemmas 11 and 13

3.5.1.1 Useful Lemmas

We first recall some useful definitions and lemmas from the literature.

Definition 13 (Relative concavity [90]). The relative concavity coefficient γk,β of a k-sparse
projection operator Hk, of relative sparsity β := k̄

k
with k̄ ≤ k is defined as:

γk,β (Hk) = sup

{
⟨y −Hk(z), z −Hk(z)⟩

∥y −Hk(z)∥22
y, z ∈ Rd, ∥y∥0 ≤ βk,y ̸= Hk(z)

}
.

90

Lemma 14 (Lemma 4.1 [90]). When Hk is the hard-thresholding operator at sparsity level
k, we have:

γk,β (Hk) =

√
β

2
=

1

2

√
k̄

k
. (3.10)

Proof of Lemma 14. Proof in [90].

3.5.1.2 Proof of Lemma 11

Proof of Lemma 11. We have:

∥w − w̄∥2 = ∥w −Hk(w)∥2 + ∥Hk(w)− w̄∥2 + 2⟨w −Hk(w),Hk(w)− w̄⟩
(a)

≥ ∥w −Hk(w)∥2 + ∥Hk(w)− w̄∥2 − 2γk,ρ∥Hk(w)− w̄∥2
= ∥w −Hk(w)∥2 + (1− 2γk,ρ)∥Hk(w)− w̄∥2

(b)
= ∥w −Hk(w)∥2 +

(
1−

√
k̄

k

)
∥Hk(w)− w̄∥2, (3.11)

where (a) follows from Definition 13 and (b) follows from Lemma 14. Therefore, rearranging,
we obtain:

∥Hk(w)−w∥2 ≤ ∥w − w̄∥2 −
(
1−

√
k̄

k

)
∥Hk(w)− w̄∥2. (3.12)

The proof is completed.

3.5.1.3 Proof of Lemma 12

Of Lemma 12. Let a =
√

k
k̄

and b = ρ+1
2
∈ (ρ, 1). Consider

w = [1, ..., 1︸ ︷︷ ︸
k

, b, ...b︸ ︷︷ ︸
k̄

] ∈ Rk+k̄, w̄ = [0, ..., 0︸ ︷︷ ︸
k

, a, ...a︸ ︷︷ ︸
k̄

] ∈ Rk+k̄.

Then we have Hk(w) = [1, ..., 1︸ ︷︷ ︸
k

, 0, ...0︸ ︷︷ ︸
k̄

] and

∥w −Hk(w)∥2 = b2k̄, ∥w − w̄∥2 = k + (a− b)2k̄, ∥Hk(w)− w̄∥2 = k + a2k̄.

It can be verified that

∥w −Hk(w)∥2 − ∥w − w̄∥2 + ∥Hk(w)− w̄∥2
∥Hk(w)− w̄∥2 =

2abk̄

k + a2k̄
= b

√
k̄

k
> ρ

√
k̄

k
.

This proves the desired inequality.

91

3.5.1.4 Proof of Lemma 13

Proof of Lemma 13. Let us abbreviate vk := Hk(w). It can be verified that

∥Π̄k
Γ(w)−w∥2 =

∥∥Π̄k
Γ(w)− vk + vk −w

∥∥2
(a)
=
∥∥Π̄k

Γ(w)− vk

∥∥2 + ∥vk −w∥2
(b)

≤∥vk − w̄∥2 − ∥Π̄k
Γ(w)− w̄∥2 + ∥w − w̄∥2 −

(
1−

√
β
)
∥vk − w̄∥2

=∥w − w̄∥2 − ∥Π̄k
Γ(w)− w̄∥2 +

√
β∥vk − w̄∥2, (3.13)

where (a) is due to Assumption 9 and the definition of the two-step projection, which
imply that Π̄k

Γ(w)− vk and vk −w have disjoint supporting sets, and (b) uses the three-
point-lemma for projection onto a convex set Γ , as well as Lemma 11. The proof is
completed.

3.5.2 Proof of Theorems 3 and 4

3.5.2.1 Proof of Theorem 3

In this section, we present the proof of Theorem 3 for the convergence of Algorithm 7
without the additional constraint, which as mentioned above, is needed for the proof of
Theorem 4, but also, as a byproduct, illustrates how the three-points lemma simplifies
previous proofs of Iterative Hard-Thresholding.

Proof of Theorem 3. The Ls- restricted smoothness of R implies that

R(wt)

≤R(wt−1) + ⟨∇R(wt−1),wt −wt−1⟩+
Ls

2
∥wt −wt−1∥2

=R(wt−1) +
Ls

2

∥∥∥∥wt −wt−1 +
1

Ls

∇R(wt−1)

∥∥∥∥2 − 1

2Ls

∥∇R(wt−1)∥2

(a)

≤R(wt−1) +
Ls

2

∥∥∥∥w̄ −wt−1 +
1

Ls

∇R(wt−1)

∥∥∥∥2 − Ls

2
(1−

√
β)∥wt − w̄∥2

− 1

2Ls

∥∇R(wt−1)∥2

=R(wt−1) + ⟨∇R(wt−1), w̄ −wt−1⟩+
Ls

2
∥wt−1 − w̄∥2 − Ls

2
(1−

√
β)∥wt − w̄∥2

(b)

≤R(w̄) +
Ls − νs

2
∥wt−1 − w̄∥2 − Ls

2
(1−

√
β)∥wt − w̄∥2

≤R(w̄) +
Ls − νs

2
∥wt−1 − w̄∥2 − 2Ls − νs

4
∥wt − w̄∥2, (3.14)

92

where (a) uses Lemma 11, (b) is due to the νs-restricted strong-convexity of R, while the
last step is implied by the condition on the sparsity level k from the theorem (k ≥ 4L2

s

ν2s
k̄),

and the definition of β (β =
√

k̄
k
).

The update rule composed of the gradient step and the projection from Algorithm 7 can
be rewritten into the following (given that the learning rate is η = 1

Ls
, and by definition of

a projection):

wt = arg min
w s.t.∥w∥0≤k

∥∥∥∥w − (wt−1 −
1

Ls

∇R(wt−1)

)∥∥∥∥2
= arg min

w s.t.∥w∥0≤k

2

Ls

⟨∇R(wt−1),w −wt−1⟩+ ∥w −wt−1∥2 +
1

L2
s

∥∇R(wt−1)∥2

= arg min
w s.t.∥w∥0≤k

R(wt−1) + ⟨∇R(wt−1),w −wt−1⟩+
Ls

2
∥w −wt−1∥2. (3.15)

Therefore, by definition of an argmin, we have:

R(wt−1) + ⟨∇R(wt−1),wt −wt−1⟩+
Ls

2
∥wt −wt−1∥2

≤ R(wt−1) + ⟨∇R(wt−1),wt−1 −wt−1⟩+
Ls

2
∥wt−1 −wt−1∥2

= R(wt−1). (3.16)

And from the Ls smoothness of R, we also have:

R(wt) ≤ R(wt−1) + ⟨∇R(wt−1),wt −wt−1⟩+
Ls

2
∥wt −wt−1∥2. (3.17)

Therefore, combining equations 3.16 and 3.17, we obtain:

R(wt) ≤ R(wt−1). (3.18)

That is, the sequence {R(wt)}t≥0 of risk is non-increasing.

Let us now consider

T :=

⌈
2Ls

νs
log

(
(Ls − νs)∥w0 − w̄∥2

2ε

)⌉
.

We claim that R(wt) ≤ R(w̄) + ε for t ≥ T + 1. To show this, suppose that ∃t ∈ [T] such
that R(wt) ≤ R(w̄) + ε. Then the claim is naturally true by monotonicity. Otherwise
assume that R(wt) > R(w̄) + ε for all t ∈ [T]. Then in view of the inequality equation 3.14
we know that

∥wT − w̄∥2 ≤ 2Ls − 2νs
2Ls − νs

∥wT−1 − w̄∥2

93

≤
(
1− νs

2Ls

)
∥wT−1 − w̄∥2

≤
(
1− νs

2Ls

)T

∥w0 − w̄∥2

= exp

(
T log

(
1− νs

2Ls

))
∥w0 − w̄∥2

≤ exp

(
2Ls

νs
log

(
(Ls − νs)∥w0 − w̄∥2

2ε
+ 1

)
log

(
1− νs

2Ls

))
∥w0 − w̄∥2

=

(
1− νs

2Ls

)
exp

(
2Ls

νs
log

(
(Ls − νs)∥w0 − w̄∥2

2ε

)
log

(
1− νs

2Ls

))
∥w0 − w̄∥2

(a)

≤
(
1− νs

2Ls

)
exp

(
2Ls

νs
log

(
2ε

(Ls − νs)∥w0 − w̄∥2
)

νs
2Ls

)
∥w0 − w̄∥2

=

(
1− νs

2Ls

)
2ε

Ls − νs

(b)

≤ 2ε

Ls − νs
, (3.19)

where (a) follows from the fact that for all x in (−∞, 1): log(1− x) ≤ −x, and (b) uses the
fact that

(
1− νs

2Ls

)
≤ 1.

Then according to equation 3.14 we must have

R(wT+1) ≤ R(w̄) +
Ls − νs

2
∥wT − w̄∥2 ≤ R(w̄) + ε,

which implies the desired claim. The proof is completed.

Remark 14. Theorem 3 recovers the result of Theorem 1 from [76]. Our proof is shorter
yet more intuitive than in that paper.

3.5.2.2 Proof of Theorem 4

Using the above results, we can now proceed to the full proof of convergence of Theorem 4
below.

Proof of Theorem 4. Denote vt = Hk(wt−1 − 1
Ls
∇R(wt−1)) for any t ∈ N. Similar to the

arguments for equation 3.14, based on the Ls-restricted smoothness of R we can show that:

R(wt)

≤R(wt−1) + ⟨∇R(wt−1),wt −wt−1⟩+
Ls

2
∥wt −wt−1∥2

=R(wt−1) +
Ls

2

∥∥∥∥wt −wt−1 +
1

Ls

∇R(wt−1)

∥∥∥∥2 − 1

2Ls

∥∇R(wt−1)∥2

(a)

≤R(wt−1) +
Ls

2

∥∥∥∥w̄ −wt−1 +
1

Ls

∇R(wt−1)

∥∥∥∥2 − Ls

2
∥wt − w̄∥2

94

+
Ls

2

√
β∥vt − w̄∥2 − 1

2Ls

∥∇R(wt−1)∥2

=R(wt−1) + ⟨∇R(wt−1), w̄ −wt−1⟩+
Ls

2
∥wt−1 − w̄∥2 − Ls

2
∥wt − w̄∥2

+
Ls

2

√
β∥vt − w̄∥2

(b)

≤R(w̄) +
Ls − νs

2
∥wt−1 − w̄∥2 − Ls

2
∥wt − w̄∥2 + Ls

2

√
β∥vt − w̄∥2

≤R(w̄) +
Ls − νs

2
∥wt−1 − w̄∥2 − Ls

2
∥wt − w̄∥2 + ρνs

4(1− ρ)
∥vt − w̄∥2, (3.20)

where (a) uses Lemma 11, (b) is due to the νs-restricted strong-convexity of R, and the last
step is due to the condition on sparsity level k from the theorem (k ≥ 4L2

s(1−ρ)2

ν2sρ
2 k̄), and the

definition of β =
√

k̄
k
.

In view of equation 3.14, which is valid under the given conditions, we know that

R(vt) ≤ R(w̄) +
Ls − νs

2
∥wt−1 − w̄∥2 − 2Ls − νs

4
∥vt − w̄∥2. (3.21)

After proper scaling and summing both sides of equation 3.20 and equation 3.21 yields that

(1− ρ)R(wt) + ρR(vt)

≤R(w̄) +
Ls − νs

2
∥wt−1 − w̄∥2 − (1− ρ)Ls

2
∥wt − w̄∥2 − ρ(Ls − νs)

2
∥vt − w̄∥2

=R(w̄) +
Ls − νs

2
∥wt−1 − w̄∥2 − Ls − ρνs

2
∥wt − w̄∥2, (3.22)

where in the second inequality we have used w̄ ∈ Γ and the non-expansiveness of projection
over convex sets.

Let us now consider

T :=

⌈
2Ls

νs
log

(
(Ls − νs)∥w0 − w̄∥2

2ε

)⌉
. (3.23)

We claim that:

min
t∈[T+1]

{(1− ρ)R(wt) + ρR(vt)} ≤ R(w̄) + ε. (3.24)

To show this, suppose that ∃t ∈ [T] such that (1− ρ)R(wt) + ρR(vt) ≤ R(w̄) + ε. Then
the claim is naturally true. Otherwise assume that (1− ρ)R(wt) + ρR(vt) > R(w̄) + ε for
all t ∈ [T]. Then in view of the inequality equation 3.22 we know that

∥wT − w̄∥2 ≤ Ls − νs
Ls − ρνs

∥wT−1 − w̄∥2 ≤
(
1− (1− ρ)νs

Ls

)
∥wT−1 − w̄∥2

95

≤
(
1− (1− ρ)νs

Ls

)T

∥w0 − w̄∥2 ≤ 2ε

Ls − νs
. (3.25)

Then according to equation 3.22 we must have

(1− ρ)R(wT+1) + ρR(vT+1) ≤ R(w̄) +
Ls − νs

2
∥wT − w̄∥2 ≤ R(w̄) + ε, (3.26)

which proves the claim from equation 3.24. Now, recall that we have assumed in the
Assumptions of Theorem 4, without loss of generality, that R is non-negative (if not, we
can redefine R by adding a constant, without modifying the gradient of R, keeping the
algorithm untouched), which implies that R (vt) ≥ 0. Plugging this in equation 3.24, for
T ≥

⌈
2Ls

νs
log
(

(Ls−νs)∥w0−w̄∥2
2ε′(1−ρ)

)⌉
+ 1 implies that:

min
t∈[T]

R (wt) ≤
1

1− ρ
R(w̄) +

ε

1− ρ
≤ (1 + 2ρ)R(w̄) +

ε

1− ρ
. (3.27)

Plugging the change of variable ε′ = ε
1−ρ

into equation 3.27 above, and in 3.23, we obtain

that when T ≥
⌈
2Ls

νs
log
(

(Ls−νs)∥w0−w̄∥2
2ε′(1−ρ)

)⌉
+ 1:

min
t∈[T]

R (wt) ≤ (1 + 2ρ)R(w̄) + ε′. (3.28)

Further, consider an ideal case where w̄ is a global minimizer of R over B0(k) :=
{w : ∥w∥0 ≤ k}. Then R (vt) ≥ R(w̄) is always true for all t ≥ 1. It follows that
the bound in equation 3.24 yields, for T ≥

⌈
2Ls

νs
log
(

(Ls−νs)∥w0−w̄∥2
2ε

)⌉
+ 1:

min
t∈[T]
{(1− ρ)R (wt) + ρR(w̄)} ≤ min

t∈[T]
{(1− ρ)R (wt) + ρR (vt)} ≤ R(w̄) + ε,

which implies: mint∈[T] R (wt) ≤ R(w̄) + ε
1−ρ

. In this case, we can simply set ρ = 0.5, and
define ε′ = ε

1−ρ
= 2ε similarly as above. This implies the desired claims. The proof is

completed.

3.5.3 Lower Bound on the Sparsity Relaxation

Consider κ > 1, p = k̄ + κ2k̄ and the following defined diagonal matrix A of size p× p and
vector b of size p:

A =

κ 0 · · · 0
0 1 · · · 0
... . . . 0
0 0 · · · 1

 ∈ Rp×p, b = [1, κ, . . . , κ︸ ︷︷ ︸
k̄

, 1, . . . , 1︸ ︷︷ ︸
κ2k̄

]⊤ ∈ Rp.

96

Clearly, A is κ-smooth and 1-strongly convex. Let us consider the following quadratic
objective function:

f(w) =
1

2
(w − b)⊤A(w − b).

Let k ∈ [k̄, κ2k̄] be the relaxed sparsity level used for IHT, and being an even number
(without loss of generality). Consider the following defined p-dimensional sparse vectors
such that ∥x̄∥0 = k̄ and ∥x∥0 = k:

w̄ = [1, κ, . . . , κ︸ ︷︷ ︸
k̄

, 0, . . . , 0︸ ︷︷ ︸
κ2k̄

]⊤ ∈ Rp, w = [0, . . . , 0︸ ︷︷ ︸
k̄/2

, κ, . . . , κ︸ ︷︷ ︸
k̄/2

, 1, . . . , 1︸ ︷︷ ︸
k−k̄/2

, 0, . . . , 0︸ ︷︷ ︸
κ2k̄−k+k̄/2

]⊤ ∈ Rp.

We next prove the following theorem which shows that k ≥ O(κ2k̄) is indeed necessary for
IHT to converge in some extreme cases for optimizing f .

Theorem 5. If k̄ ≥ 4 and k ≤ κ2k̄
8

, then it holds that

f(w) ≥ f(w̄) +
κ2k̄

16
,

while w is a fixed point of IHT with sparsity level k and step-size η = 1
2κ

, i.e.,

w = Hk (w − η∇f(w)) .

Proof. It can be seen that f(w̄) = 1
2
κ2k̄ and

f(w) =
1

2

(
κ+

(
k̄

2
− 1

)
κ2 + κ2k̄ +

k̄

2
− k

)
.

Therefore

f(w)− f(w̄) =
1

2

(
κ+

(
k̄

2
− 1

)
κ2 +

k̄

2
− k

)
≥1

2

((
k̄

2
− 1

)
κ2 − k

)
ζ1
≥1

2

(
k̄

4
κ2 − k

)
≥ κ2k̄

16
,

where ζ1 uses k̄ ≥ 4, and the last inequality is due to k ≤ κ2k̄
8

. Note that

∇f(w) = A(w − b) = [−κ, . . . ,−κ︸ ︷︷ ︸
k̄/2

, 0, . . . , 0︸ ︷︷ ︸
k

,−1, . . . ,−1︸ ︷︷ ︸
κ2k̄−k+k̄/2

]⊤.

Given η = 1
2κ

, we can show that

w − η∇f(w) = [0.5, . . . , 0.5︸ ︷︷ ︸
k̄/2

, κ, . . . , κ︸ ︷︷ ︸
k̄/2

, 1, . . . , 1︸ ︷︷ ︸
k−k̄/2

, 0.5/κ, . . . , 0.5/κ︸ ︷︷ ︸
κ2k̄−k+k̄/2

]⊤,

which directly yields (as κ > 1)

w = Hk(w − η∇f(w)),

and thus w is a fixed point of IHT with sparsity level k and step-size η = 1
2κ

.

97

Remark 15. The example is inspired by the one from [6], though slightly simpler. A
main difference is that in our example the supporting sets of w and w̄ are allowed to be
significantly overlapped, while in theirs the supporting sets of the two vectors are constructed
to be disjoint.

3.6 Extensions: Stochastic and Zeroth-Order Cases

In this section, we provide extensions of Algorithm 7 to the stochastic and zeroth-order
sparse optimization problems, and provide the corresponding convergence guarantees in
objective value without system error.

3.6.1 Stochastic Optimization

In this section, we consider the previous risk minimization problem, in a finite-sum setting,
i.e. with R(w) = 1

n

∑n
i=1Ri(w), as in [116,163]: indeed, stochastic algorithms can tackle

more easily large-scale datasets where estimating the full ∇R(w) is expensive.

3.6.1.1 Algorithm

We describe the stochastic variant of our previous Algorithm 7 in Algorithm 8 below, which
is an extension of the algorithm from [163], to the considered mixed constraints problem
setting, using our two-step projection. More precisely, we approximate the gradient of R by
a minibatch stochastic gradient with a batch-size increasing exponentially along training,
and following the gradient step, we apply our two-step projection operator.

Algorithm 8: Hybrid Stochastic IHT with Extra Constraints (HSG-HT-TSP)
Input: w0: initial point, η: learning rate, T : number of iterations, {st}:

mini-batch sizes.
for t = 1 to T do

Uniformly sample st indices St from [n] without replacement;
Compute the approximate gradient gt−1 =

1
st−1

∑
it∈St
∇Rit(wt−1);

wt = Π̄k
Γ(wt−1 − ηgt−1);

end
Output: ŵT = argminw∈{w1,...,wT }R(w).

3.6.1.2 Convergence Analysis

Before proceeding with the convergence analysis, we make an additional assumption on the
population variance of the stochastic gradients, similar to the one in [104].

98

Assumption 10 (Bounded stochastic gradient variance). For any w, the population
variance of the gradient estimator is bounded by B:

1

n

n∑
i=1

∥∇Ri(w)−∇R(w)∥2 ≤ B. (3.29)

We now present our convergence analysis, first with Γ = Rd, retrieving Theorem 2
from [163].

Theorem 6 (Equivalent to Theorem 2 from [163], Proof in Section 3.7.2.2). Assume that
Γ = Rd. Suppose that Assumption 7, Assumption 8 and Assumption 10 hold. Let s = 2k.
Let w̄ be an arbitrary k̄-sparse vector. Let C be an arbitrary positive constant. Assume
that we run HSG-HT-TSP (Algorithm 8) for T timesteps, with η = 1

Ls+C
, and denote

α := C
Ls

+ 1 and κs := Ls

νs
. Suppose that k ≥ 4α2κ2

sk̄. Finally, assume that we take the
following batch-size: st :=

⌈
τ
ωt

⌉
with ω := 1− 1

4ακs
and τ := ηB

C
. Then, we have the following

convergence rate:

ER(ŵT)−R(w̄) ≤ 2α2Lsκsω
T

(
∥w̄ −w0∥2 +

4

3

)
. (3.30)

Such a Theorem is equivalent to Theorem 2 from [163], however, the proof from [163]
is based on the same framework as [76], which makes it more complex. Our proof, on
the other hand, is very similar to our proof of Theorem 3 above (i.e. closer to convex
constrained optimization proofs as discussed above), and simply incorporates the variance
of the stochastic gradient estimator (exponentially decreasing thanks to the exponentially
increasing batch-size) in a properly weighted telescopic sum (with a technique inspired
from [90]). We believe this makes the proof more readily usable for future extensions of IHT.
And in particular, using a similar technique as for Theorem 4, we can extend our result to
the case with an extra constraint Γ verifying Assumption 9: we present such extension in
Theorem 7 below.

Theorem 7 (Proof in Section 3.7.2.3). Suppose that Assumptions 7 8, 9 and 10 hold, and
that R is non-negative (without loss of generality). Let s = 2k. Let w̄ be an arbitrary
k̄-sparse vector. Let C be an arbitrary positive constant. Assume that we run HSG-HT-TSP
(Algorithm 8) for T timesteps, with η = 1

Ls+C
, and denote α := C

Ls
+ 1 and κs := Ls

νs
.

Suppose that k ≥ 4α2 1
ρ2
κ2
sk̄ for some ρ ∈ (0, 1). Finally, assume that we take the following

batch-size: st :=
⌈

τ
ωt

⌉
with ω := 1 − 1

4α 1
ρ
κs

and τ := ηB
C

. Then, we have the following
convergence rate:

Emin
t∈[T]

R (wt)− (1 + 2ρ)R(w̄) ≤ 2
α2

ρ(1− ρ)
Lsκsω

T

(
∥w̄ −w0∥2 +

4

3

)
. (3.31)

Further, if w̄ is a global minimizer of R over B0(k) := {w : ∥w∥0 ≤ k}, then, with ρ = 0.5:

Emin
t∈[T]

R (wt)−R(w̄) ≤ 8α2Lsκsω
T

(
∥w̄ −w0∥2 +

4

3

)
. (3.32)

99

Corollary 3 (Proof in Section 3.7.3.). Therefore, the number of calls to a gradient
∇Ri (#IFO), and the number of hard thresholding operations (#HT) such that the left-
hand sides in Theorem 7 above are smaller than some ε > 0, are respectively: #HT =

O(κs log(
1
ε
)) and #IFO = O

(
κs

νsε

)
.

3.6.2 Zeroth-Order Optimization (ZOO)

We now consider the zeroth-order (ZO) case [114], in which one does not have access to
the gradient ∇R(w), but only to function values R(w), which arises for instance when
the dataset is private as in distributed learning [66, 161] or the model is private as in
black-box adversarial attacks [95], or when computing ∇R(w) is too expensive such as in
certain graphical modeling tasks [146]. The idea is then to approximate ∇R(w) using finite
differences. We refer the reader to [18] and [93] for an overview of ZO methods.

3.6.2.1 Algorithm

In this section, we describe the ZO version of our algorithm. At its core, it uses the ZO
estimator from [46]. We present the full algorithm in Algorithm 9, where Ds2 is a uniform
probability distribution on the following set B, which is the set of unit spheres supported
on supports of size s2 ≤ d: B = {w ∈ Rd : ∥w∥0 ≤ s2, ∥w∥2 ≤ 1}. We can sample from
this set by first sampling a random support of size s2, and then sampling from the unit
sphere on that support. Note that if we choose s2 := d, this estimator simply becomes the
vanilla ZO estimator with unit-sphere smoothing [93]. Choosing s2 < d allows to avoid the
full-smoothness assumption and can reduce memory consumption by allowing to sample
random vectors of size s2 instead of d. We refer to [46] for more details on such a ZO
estimator. The difference with [46] (in addition to the mixed constraint setting and the use
of the TSP) is that in our case we sample an exponentially increasing number of random
directions, which allows us, for the first time up to our knowledge, to obtain convergence in
risk for a ZO hard-thresholding algorithm without any system error (except the unavoidable
system error due to the smoothing µ).

Algorithm 9: Hybrid ZO IHT with Extra Constraints (HZO-HT-TSP)
Input: w0: initial point, η: learning rate, T : number of iterations, s2: size of the

random supports, {qt}: number of random directions.
for t = 1 to T do

Uniformly sample qt−1 i.i.d. random directions {ui}qt−1

i=1 ∼ Ds2

Compute the approximate gradient
gt =

1
qt−1

∑qt−1

i=1
d
µ
(R(wt−1 + µui)−R(wt−1))ui

wt = Π̄k
Γ(wt−1 − ηgt−1)

end
Output: ŵT = argminw∈{w1,...,wT }R(w).

100

3.6.2.2 Convergence Analysis

Assumption 11 ((Ls, s)-RSS’). ([116, 133]) R is Ls-restricted strongly smooth with
sparsity level s, i.e. it is differentiable, and there exist a generic constant Ls such that for
all (x,y) ∈ Rd with ∥x− y∥0 ≤ s: ∥∇R(x)−∇R(y)∥ ≤ Ls∥x− y∥.

Remark 16. Note that if a convex function R is (Ls, s)-RSS’, then it is also (Ls, s)-RSS
(this can be proven in the same way as for usual smoothness in convex optimization (see
Lemma 1.2.3 from [110]). However, the converse is not true here, contrary to what holds
for usual smooth and convex functions (cf. Theorem 2.1.5 from [110]), as we show through
some counter-example in Section 3.7.1. Assumption 11 is indeed slightly more restrictive
than Assumption 8, but it is necessary when working with ZO gradient estimators (see more
details in [46]).

We now present our main convergence theorem for the ZO setting, first when Γ = Rd.

Theorem 8 (Proof in Section 3.7.4.2). Assume that Γ = Rd. Let w̄ be an arbitrary k̄-sparse
vector. Let s = 3k, and s2 ∈ {1, ..., d}. Assume that R is (Ls′ , s

′)-RSS’ with s′ = max(s2, s),
and νs-restricted strongly convex. Denote κs :=

Ls′
νs

. Let C be an arbitrary positive constant,

and denote εF := 2d
(s2+2)

(
(s−1)(s2−1)

d−1
+ 3
)
, εabs := 2dL2

s′ss2

(
(s−1)(s2−1)

d−1
+ 1
)
, and εµ := L2

s′sd.
Assume that we run HZO-HT-TSP (Algorithm 9) for T timesteps, with η = 1

Ls′+C
= 1

αLs′
,

with α := C
Ls′

+ 1. Suppose that k ≥ 16α2κ2
sk̄. Finally, assume that we take the following

number qt of random directions at each iteration: qt :=
⌈

τ
ωt

⌉
with ω := 1 − 1

8ακs
and

τ := 16κs
εF

(α−1)
. Then, we have the following convergence rate:

ER(ŵT)−R(w̄) ≤ 4α2Ls′κsω
T

(
∥w̄ −w0∥2 +

1

3

η∥∇R(w̄)∥2
κsLs′

)
+ Zµ2, with (3.33)

with Z = εµ

(
2
νs

+ 1
C

)
+ εabs

C
.

Such a novel result illustrates the power of proof techniques based on our three-point
lemma. Up to our knowledge, it is the first global convergence guarantee without system
error for a ZO hard-thresholding algorithm (see Table 3.1), and as such, is a significant
improvement over the result from [46]. Our proof differs from the one in [46]: that latter
uses a bound on the expansivity of the hard-thresholding operator, and only provides a
result in terms of ∥w − w̄∥, with a non-vanishing system error which depends on ∇R(w)
(cf. Table 3.1). We now present our Theorem in the case of a general support-preserving
convex set Γ.

Theorem 9 (Proof in Section 3.7.4.3). Suppose that Assumptions 7, 9, and 11 hold, and
that R is non-negative (without loss of generality). Let s = 3k, and let w̄ be an arbitrary
k̄-sparse vector. Let s2 ∈ {1, ..., d}. Assume that R is (Ls′ , s

′)-RSS’ with s′ = max(s2, s),
and νs-RSC. Denote κs :=

Ls′
νs

. Let C be an arbitrary positive constant, and denote

εF := 2d
(s2+2)

(
(s−1)(s2−1)

d−1
+ 3
)
, εabs := 2dL2

s′ss2

(
(s−1)(s2−1)

d−1
+ 1
)
, and εµ := L2

s′sd. Assume

101

that we run HZO-HT-TSP (Algorithm 9) for T timesteps, with η = 1
Ls′+C

= 1
αLs′

, with
α := C

Ls′
+1. Suppose that k ≥ 16α2

ρ2
κ2
sk̄ for some ρ ∈ (0, 1). Finally, assume that we take qt

random directions at each iteration, with qt :=
⌈

τ
ωt

⌉
with ω := 1− 1

8 1
ρ
ακs

and τ := 16κs
εF

(α−1)
.

Then, we have the following convergence rate:

Emin
t∈[T]

R(wt)− (1 + 2ρ)R(w̄) ≤ 4
α2

ρ(1− ρ)
Ls′κsω

T

(
∥w̄ −w0∥2 +

1

3

η∥∇R(w̄)∥2
κsLs′

)
+ Zµ2,

(3.34)
with Z = 1

1−ρ

(
εµ

(
2
νs

+ 1
C

)
+ εabs

C

)
. Further, if w̄ is a global minimizer of R over B0(k) :=

{w : ∥w∥0 ≤ k}, then, with ρ = 0.5:

Emin
t∈[T]

R (wt)−R(w̄) ≤ 16α2Ls′κsω
T

(
∥w̄ −w0∥2 +

1

3

η∥∇R(w̄)∥2
κsLs′

)
+ Zµ2. (3.35)

Corollary 4 (Proof in Section 3.7.5.). Additionally, the number of calls to R (#IZO),
and the number of hard thresholding operations (#HT) such that the left-hand sides in
Theorem 9 above are smaller than ε + Zµ2, for some ε > 0 are respectively: #HT =

O(κs log(
1
ε
)) and #IZO = O

(
εF

κ3
sLs

ε

)
. Note that if s2 = d (in which case Assumption 11

becomes the usual (unrestricted) smoothness assumption), we have εF = O(s) = O(k), and
therefore we obtain a query complexity that is dimension independent.

Such a query complexity result also holds when Γ = Rd (cf. Corollary 6 in Section). [46]
also achieved a dimension independent rate, but their convergence result exhibited a
potentially large non-vanishing system error (cf. Table 3.1), which we do not have in
Theorems 8 and 9. In strongly convex and smooth ZOO, a dimension independent query
complexity is impossible to achieve [77], unless with additional assumptions [7, 30,31,31,61,
77,91,117,135,149,160]. Our work confirms that, instead of making extra assumptions, a
possible way to obtain a dimension independent query complexity is to instead consider
optimization with ℓ0 constraints.

3.7 Proofs for Stochastic and Zeroth-Order Optimization

3.7.1 Discussion on Restricted Smoothness Assumptions

In this section, we provide additional details on the difference between Assumptions 8 and
11. First, we recall the standard definition of smoothness:

Definition 14. A differentiable function f is L-smooth if for all x,y ∈ (Rd)2:

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ (3.36)

We now provide the counter-example below, illustrating that Assumptions 8 and 11 are
not always equivalent, even if f is convex (and that those two assumptions are also different
from the usual smoothness assumption).

102

Lemma 15. Let us consider the following convex function f : R2 → R defined as

∀(x1, x2) ∈ R2 : f(x1, x2) = x2
1 + x2

2 + x1x2 (3.37)

f has the following regularity properties, with the given constants being each time the
smallest possible:

• (i) 3-smooth

• (ii) 2-restricted smooth (Assumption 8) with sparsity level 1

• (iii)
√
5-restricted strongly smooth (Assumption 11) with sparsity level 1

Proof. 3.7.1.1 Proof of (i)

The Hessian of f is:

H =

[
2 1
1 2

]
,

and its diagonalization is:
H = PDP−1, (3.38)

with:
P =

[
1 −1
1 1

]
,P−1 =

1

2

[
1 1
−1 1

]
, and D =

[
3 0
0 1

]
.

Therefore, the smallest L such that we have H ≼ LI2×2 is 3, which implies from Lemma
1.2.2 in [112] that f is smooth with smoothness constant 3.

3.7.1.2 Proof of (ii):

Let us take two x,y in (Rd)2 such that ∥x− y∥0 ≤ 1, which therefore implies that: x1 = y1
or x2 = y2 (or both). Let us suppose that (E): x2 = y2. Note that this implies that
∥x− y∥2 = (x1 − y1)

2. We now need to find the smallest L such that:

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ L

2
∥x− y∥22 (3.39)

⇔ (3.40)

y21+y22+y1y2 ≤ x2
1+x2

2+x1x2+(2x1+x2)(y1−x1)+(2x2+x1)(y2−x2)+
L

2
(x1−y1)2 (3.41)

(E)⇔ (3.42)

y21+x2
2+y1x2 ≤ x2

1+x2
2+x1x2+(2x1+x2)(y1−x1)+(2x2+x1)(x2−x2)+

L

2
(x1−y1)2 (3.43)

⇔ (3.44)

103

y21 + x2
1 − 2y1x1 ≤

L

2
(x1 − y1)

2 (3.45)

⇔ (3.46)

(x1 − y1)
2 ≤ L

2
(x1 − y1)

2 (3.47)

Therefore, the smallest L possible which can verify the above is L = 2. By symmetry, we
would have the same chain of equivalence in the alternative case where we would replace
x2 = y2 by x1 = y1. Therefore, we need some L that will work for both cases, so again,
such smallest L is 2.

3.7.1.3 Proof of (iii)

Let us take two x,y such that ∥x−y∥0 ≤ 1, which therefore implies that: x1 = y1 or x2 = y2
(or both). Let us suppose that (E): x2 = y2. Note that this means that ∥x−y∥2 = (x1−y1)2.
What we need to find is the smallest L such that:

∥∇f(x)−∇f(y)∥2 ≤ L2∥x− y∥22 (3.48)
⇔ (3.49)

(2x1 + x2 − (2y1 + y2))
2 + (2x2 + x1 − (2y2 + y1))

2 ≤ L2(x1 − y1)
2 (3.50)

(E)⇔ (3.51)
(2x1 + x2 − (2y1 + x2))

2 + (2x2 + x1 − (2x2 + y1))
2 ≤ L2(x1 − y1)

2 (3.52)
⇔ (3.53)

4(x1 − y1)
2 + (x1 − y1)

2 ≤ L2(x1 − y1)
2 (3.54)

⇔ (3.55)
5(x1 − y1)

2 ≤ L2(x1 − y1)
2 (3.56)

Therefore, the smallest L possible which can verify the above is L =
√
5. By symmetry, we

would have the same chain of equivalence in the alternative case where we would replace
x2 = y2 by x1 = y1. So therefore we need some L that will work for both cases, so again,
that smallest L is

√
5.

3.7.2 Proof of Theorems 6 and 7

For the proof of Theorem 7, we use a similar technique as in Theorem 4 to deal with the
extra constraint, i.e. we start first from the case Γ = Rd (Theorem 6). Based on our ℓ0
three-point lemma (Lemma 11), such proof of Theorem 6 is simpler than the corresponding
proof of [163] (Proof of Theorem 2, Section B.3). Also, compared to the deterministic
setting, here, we need to carefully incorporate the exponentially decreasing error of the
gradient estimator into a properly weighted telescopic sum containing terms in ∥wt − w̄∥2.
Below we provide several intermediary results needed for the proof of Theorem 7. Then,
the proof of Theorem 7 will be provided in Section 3.7.2.3.

104

3.7.2.1 Useful Lemma

Before starting the proof, we present the following lemma from [104], which relates the
batch-size st and the error of the gradient estimator:

Lemma 16 ([104], Lemma 1). Let wt ∈ Rd. Assume that gt is the sampled gradient in
Algorithm 8 and that the population variance of Ri(wt) is bounded by B as in Assumption 10.
Then the gradient estimate gt is an unbiased estimate of ∇R(wt), and its variance is as
follows:

E ∥gt −∇R (wt)∥2 ≤
n− st
n− 1

1

st
B, (3.57)

Note that the original Lemma from [104] is written as an equality, in terms of the exact
population variance of a random variable, denoted σ2, but we rewrite it as an inequality
here for simplicity, in order to have a general bound that applies at each iteration.

Proof of Lemma 16. Proof in [104].

3.7.2.2 Proof of Theorem 6

Below we now first present a proof for the convergence of Algorithm 8 without the additional
constraint (Theorem 6), which is needed for the proof of Theorem 7, and also, as a byproduct,
illustrates how the three-point lemma simplifies such proof.

Proof of Theorem 6. The Ls-smoothness of R implies that

R(wt)

≤R(wt−1) + ⟨∇R(wt−1),wt −wt−1⟩+
Ls

2
∥wt −wt−1∥2

=R(wt−1) + ⟨gt−1,wt −wt−1⟩+
Ls

2
∥wt −wt−1∥2 + ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

=R(wt−1) +
1

2η

[
∥wt − (wt−1 − ηgt−1)∥2 − η2∥gt−1∥2 − ∥wt −wt−1∥2

]
+

Ls

2
∥wt −wt−1∥2

+ ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

=R(wt−1) +
1

2η
∥wt − (wt−1 − ηgt−1)∥2 −

η

2
∥gt−1∥2 +

[
Ls − 1

η

2

]
∥wt −wt−1∥2

+ ⟨∇R(wt−1)− gt−1,wt −wt−1⟩
(a)

≤R(wt−1) +
1

2η

[
∥w̄ − (wt−1 − ηgt−1)∥2 − (1−

√
β)∥wt − w̄∥2

]
− η

2
∥gt−1∥2

+

[
Ls − 1

η

2

]
∥wt −wt−1∥2 + ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

=R(wt−1) +
1

2η

[
∥w̄ −wt−1∥2 + η2∥gt−1∥2 − 2⟨ηgt−1,wt−1 − w̄⟩

]
− 1

2η
(1−

√
β)∥wt − w̄∥2

105

− η

2
∥gt−1∥2 +

[
Ls − 1

η

2

]
∥wt −wt−1∥2 + ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

=R(wt−1) +
1

2η

[
∥w̄ −wt−1∥2 − 2⟨ηgt−1,wt−1 − w̄⟩

]
− 1

2η
(1−

√
β)∥wt − w̄∥2

+

[
Ls − 1

η

2

]
∥wt −wt−1∥2 + ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

(b)
=R(wt−1) +

1

2η
∥w̄ −wt−1∥2 − ⟨gt−1,wt−1 − w̄⟩ − 1

2η
(1−

√
β)∥wt − w̄∥2

+

[
Ls − 1

η
+ C

2

]
∥wt −wt−1∥2 +

1

2C
∥∇R(wt−1)− gt−1∥2,

where (a) follows from Lemma 11 and (b) follows from the inequality ⟨a, b⟩ ≤ C
2
a2 + 1

2C
b2,

for any (a, b) ∈ (Rd)2 with C > 0 an arbitrary strictly positive constant.

Let us now assume that η = 1
Ls+C

: therefore the term
[
Ls− 1

η
+C

2

]
∥wt −wt−1∥2 above

is 0. We now take the conditional expectation (conditioned on wt−1, which is the random
variable which realizations are wt−1), on both sides, and from Lemma 16 we obtain the
inequality below (we slightly abuse notations and denote E[·|wt−1 = wt−1] by E[·|wt−1]):

E[R(wt)|wt−1] ≤R(wt−1) +
1

2η
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

B(n− st−1)

2Cst−1(n− 1)
(a)

≤R(wt−1) +
1

2η
∥w̄ −wt−1∥2 +

[
R(w̄)−R(wt−1)−

νs
2
∥wt−1 − w̄∥2

]
− 1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

B

2Cst−1

=R(w̄) +

[
1
η
− νs

2

]
∥w̄ −wt−1∥2 −

1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

B

2Cst−1

, (3.58)

where (a) follows from the RSC condition, and the fact that st−1 ∈ N∗.

We recall that η = 1
Ls+C

. Let us define α := C
Ls

+ 1. Then C = (α− 1)Ls, and η = 1
αLs

.
Also recall that κs =

Ls

νs
.

We can simplify the inequality above into:

E[R(wt)|wt−1]−R(w̄) ≤ 1

2η

[(
1− 1

ακs

)
∥w̄ −wt−1∥2 − (1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

ηB

Cst−1

]
. (3.59)

106

We now take the expectation over wt−1 of the above inequality (i.e. we take Ewt−1 [·]): using
the law of total expectation (E[·] = Ewt−1 [E[·|wt−1]]) we obtain:

ER(wt)−R(w̄) ≤ 1

2η

[(
1− 1

ακs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2 + ηB

Cst−1

]
(3.60)

Similarly as in [90], we now take a weighted sum over t = 1, ..., T , to obtain:

T∑
t=1

2η

(
1− 1

ακs

1−√β

)T−t

E[R(wt)−R(w̄)]

≤
T∑
t=1

(
1− 1

ακs

1−√β

)T−t [(
1− 1

ακs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2 + ηB

Cst−1

]

=
T∑
t=1

(
1− 1

ακs

1−√β

)T−t [(
1− 1

ακs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2

]

+
T∑
t=1

(
1− 1

ακs

1−√β

)T−t
ηB

Cst−1

=(1−
√

β)
T∑
t=1

(1− 1
ακs

1−√β

)T−t+1

E∥w̄ −wt−1∥2 −
(
1− 1

ακs

1−√β

)T−t

E∥wt − w̄∥2

+
T∑
t=1

(
1− 1

ακs

1−√β

)T−t
ηB

Cst−1

(a)
=(1−

√
β)

(1− 1
ακs

1−√β

)T

∥w̄ −w0∥2 − E∥wT − w̄∥2
+

T∑
t=1

(
1− 1

ακs

1−√β

)T−t
ηB

Cst−1

≤(1−
√

β)

(
1− 1

ακs

1−√β

)T

∥w̄ −w0∥2 +
T∑
t=1

(
1− 1

ακs

1−√β

)T−t
ηB

Cst−1

≤
(
1− 1

ακs

1−√β

)T

∥w̄ −w0∥2 +
T∑
t=1

(
1− 1

ακs

1−√β

)T−t
ηB

Cst−1

, (3.61)

where (a) follows from simplifying the telescopic sum.

We now choose k and st as follows: we choose k ≥ 4α2κ2
sk̄, which implies that:√

β ≤ 1

2ακs

=⇒
√

β ≤ 1

2ακs − 1

107

=⇒ 1−
√

β ≥ 1− 1

2ακs − 1
=

2ακs − 2

2ακs − 1
=

1− 1
ακs

1− 1
2ακs

=⇒
(
1− 1

ακs

1−√β

)
≤ 1− 1

2ακs

. (3.62)

And we choose st :=
⌈

τ
ωt

⌉
with ω := 1− 1

4ακs
and τ := ηB

C
.

Let us call ν := 1− 1
2ακs

. Note that we have:

ν ≤ ω. (3.63)

And that we have the inequality below:

ν

ω
=

1− 1
2ακs

1− 1
4ακs

=
4ακs − 2

4ακs − 1
= 1− 1

4ακs − 1
≤ 1− 1

4ακs

= ω. (3.64)

This allows us to simplify equation 3.61 into:

E
T∑
t=1

2η

(
1− 1

ακs

1−√β

)T−t

[R(wt)−R(w̄)] ≤ νT∥w̄ −w0∥2 +
T∑
t=1

νT−tωt−1

= νT∥w̄ −w0∥2 +
ωT

ω

T∑
t=1

(ν
ω

)T−t

= νT∥w̄ −w0∥2 +
ωT

ω

1−
(
ν
ω

)T
1−

(
ν
ω

)
≤ νT∥w̄ −w0∥2 +

ωT

ω

1

1−
(
ν
ω

)
(a)

≤ νT∥w̄ −w0∥2 +
ωT

ω

1

1− ω
(b)

≤ νT∥w̄ −w0∥2 +
4

3
ωT 1

1− ω
(c)

≤ ωT∥w̄ −w0∥2 +
4

3
ωT 1

1− ω
(d)

≤ ωT

1− ω
∥w̄ −w0∥2 +

4

3
ωT 1

1− ω

=
ωT

1− ω

(
∥w̄ −w0∥2 +

4

3

)
= 4ακsω

T

(
∥w̄ −w0∥2 +

4

3

)
, (3.65)

108

where in the left hand side we have used the linearity of expectation, and where (a) uses
equation 3.64, (b) uses the fact that 1

ω
= 1

1− 1
4ακs

≤ 1
1− 1

4

= 4
3

(since κs ≥ 1 and α ≥ 1 (indeed,

from the theorem’s assumption α = C
Ls

+ 1 with C > 0)), (c) uses equation 3.63, and (d)
uses the fact that ω < 1 so 1 < 1

1−ω
.

Let us now normalize the above inequality:

E

∑T
t=1 2η

(
1− 1

ακs

1−
√
β

)T−t

R(wt)

∑T
t=1 2η

(
1− 1

ακs

1−
√
β

)T−t
≤ R(w̄) +

4ακsω
T
(
∥w̄ −w0∥2 + 4

3

)
∑T

t=1 2η

(
1− 1

ακs

1−
√
β

)T−t
. (3.66)

The left hand side above is a weighted sum, which is an upper bound on the smallest
term of the sum. Regarding the right hand side, we can simplify it using the fact that

0 <

(
1− 1

ακs

1−
√
β

)
, and therefore:

T∑
t=1

(
1− 1

ακs

1−√β

)T−t

≥ 1. (3.67)

Therefore, we obtain:

E min
t∈{1,..,T}

R(wt)−R(w̄) ≤ 4ακsω
T
(
∥w̄ −w0∥2 + 4

3

)
2η

= 2α2Lsκsω
T

(
∥w̄ −w0∥2 +

4

3

)
(3.68)

Which can be simplified into the expression below, using the definition of ŵT :

ER(ŵT)−R(w̄) ≤ 2α2Lsκsω
T

(
∥w̄ −w0∥2 +

4

3

)
. (3.69)

The proof is completed.

Corollary 5. Under the assumptions of Theorem 6, let ε be a small enough positive number
ε > 0. To achieve an error ER(ŵT) − R(w̄) ≤ ε using Algorithm 8 the number of calls
to a gradient ∇Ri (#IFO), and the number of hard thresholding operations (#HT) are
respectively:

#HT = O(κs log(
1

ε
)), #IFO = O

(
κs

νsε

)
. (3.70)

Proof of Corollary 5. Let ε ∈ R∗
+. Let us find T to ensure that ER(ŵT)−R(w̄) ≤ ε. This

will be enforced if:

2α2Lsκsω
T

(
∥w̄ −w0∥2 +

4

3

)
≤ ε

109

⇐⇒ T log(ω) ≤ log

(
ε

2α2Lsκs

(
∥w̄ −w0∥2 + 4

3

))

⇐⇒ T ≥ 1

log(1
ω
)
log

(
2α2Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)
. (3.71)

Therefore, let us take:

T :=

⌈
1

log(1
ω
)
log

(
2α2Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)⌉
. (3.72)

We can now derive the #IFO and #HT. First, we have one hard-thresholding operation
at each iteration, therefore #HT= T . Using the fact that 1

log(1
ω
)
= 1

− log(ω)
= 1

− log(1− 1
4ακs

)
≤

1
1

4ακs

= 4ακs (since by property of the logarithm, for all x ∈ (−∞,−1) : log(1− x) ≤ −x),

we obtain that #HT = O(κs log
(
1
ε

)
).

We now turn to computing the #IFO. At each iteration t we have st gradient evaluations,
therefore:

#IFO =
T−1∑
t=0

st

≤
T−1∑
t=0

(τ

ωt
+ 1
)

= T + τ

(
1
ω

)T − 1
1
ω
− 1

≤ T +
τ

1
ω
− 1

(
1

ω

)T

= T +
τ

1
ω
− 1

exp

(
T log

(
1

ω

))
(a)

≤ 1 +
1

log(1
ω
)
log

(
2α2Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)

+
τ

1
ω
− 1

exp

(
log

(
1

ω

)[
1

log(1
ω
)
log

(
2α2Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)
+ 1

])

= 1 +
1

log(1
ω
)
log

(
2α2Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)
+

τ
ω

1
ω
− 1

2α2Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

= 1 +
1

log(1
ω
)
log

(
2α2Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)
+

τ

1− ω

2α2Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

= 1 +
1

log(1
ω
)
log

(
2α2Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)
+ τ

8α3Lsκ
2
s

(
∥w̄ −w0∥2 + 4

3

)
ε

110

(b)
= 1 +

1

log(1
ω
)
log

(
2α2Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)

+
B

αLs

1

Ls(α− 1)

8α3Ls

ε

Ls

νs
κs

(
∥w̄ −w0∥2 +

4

3

)
= 1 +

1

log(1
ω
)
log

(
2α2Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)
+

8Bα2κs

(
∥w̄ −w0∥2 + 4

3

)
(α− 1)νs

1

ε
,

(3.73)

where (a) follows from equation 3.72, and for (b) we recall that τ = ηB
C

, η = 1
αLs

and
C = Ls(α− 1).

Therefore, overall, the IFO complexity is in O(κs

νsε
).

3.7.2.3 Proof of Theorem 7

We now proceed with the full proof of Theorem 7.

Proof of Theorem 7. Similary as in the proof of Theorem 6 in Section 3.7.2.2, let us take:
η := 1

Ls+C
, and α := C

Ls
+ 1. Then C = (α − 1)Ls, and η = 1

αLs
. Recall that κs := Ls

νs
.

Denote vt = Hk(wt−1 − η∇R(wt−1)) for any t ∈ N.

Similarly as in Section 3.7.2.2, the Ls-smoothness of R implies that

R(wt)

≤R(wt−1) + ⟨∇R(wt−1),wt −wt−1⟩+
Ls

2
∥wt −wt−1∥2

=R(wt−1) + ⟨gt−1,wt −wt−1⟩+
Ls

2
∥wt −wt−1∥2 + ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

=R(wt−1) +
1

2η

[
∥wt − (wt−1 − ηgt−1)∥2 − η2∥gt−1∥2 − ∥wt −wt−1∥2

]
+

Ls

2
∥wt −wt−1∥2

+ ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

=R(wt−1) +
1

2η
∥wt − (wt−1 − ηgt−1)∥2 −

η

2
∥gt−1∥2 +

[
Ls − 1

η

2

]
∥wt −wt−1∥2

+ ⟨∇R(wt−1)− gt−1,wt −wt−1⟩
(a)

≤R(wt−1) +
1

2η

[
∥w̄ − (wt−1 − ηgt−1)∥2 − ∥wt − w̄∥2 +

√
β∥vt − w̄∥2

]
− η

2
∥gt−1∥2

+

[
Ls − 1

η

2

]
∥wt −wt−1∥2 + ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

=R(wt−1) +
1

2η

[
∥w̄ −wt−1∥2 + η2∥gt−1∥2 − 2⟨ηgt−1,wt−1 − w̄⟩

]
− 1

2η
∥wt − w̄∥2

111

+

√
β

2η
∥vt − w̄∥2 − η

2
∥gt−1∥2 +

[
Ls − 1

η

2

]
∥wt −wt−1∥2 + ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

=R(wt−1) +
1

2η

[
∥w̄ −wt−1∥2 − 2⟨ηgt−1,wt−1 − w̄⟩

]
− 1

2η
∥wt − w̄∥2 +

√
β

2η
∥vt − w̄∥2

(3.74)

+

[
Ls − 1

η

2

]
∥wt −wt−1∥2 + ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

(b)
=R(wt−1) +

1

2η
∥w̄ −wt−1∥2 − ⟨gt−1,wt−1 − w̄⟩ − 1

2η
∥wt − w̄∥2 +

√
β

2η
∥vt − w̄∥2

+

[
Ls − 1

η
+ C

2

]
∥wt −wt−1∥2 +

1

2C
∥∇R(wt−1)− gt−1∥2, (3.75)

where (a) follows from Lemma 13 and (b) follows from the inequality ⟨a, b⟩ ≤ C
2
a2 + 1

2C
b2,

for any (a, b) ∈ (Rd)2 with C > 0 an arbitrary strictly positive constant. Let us now

take η := 1
Ls+C

: therefore the term
[
Ls− 1

η
+C

2

]
∥wt − wt−1∥2 above is 0. We now take

the conditional expectation (conditioned on wt−1, which is the random variable which
realizations are wt−1), on both sides, and from Lemma 16 we obtain the inequality below
(we slightly abuse notations and denote E[·|wt−1 = wt−1] by E[·|wt−1]):

E[R(wt)|wt−1] ≤R(wt−1) +
1

2η
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+

B(n− st−1)

2Cst−1(n− 1)
(3.76)

(a)

≤R(wt−1) +
1

2η
∥w̄ −wt−1∥2 +

[
R(w̄)−R(wt−1)−

νs
2
∥wt−1 − w̄∥2

]
− 1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+

B

2Cst−1

=R(w̄) +

[
1
η
− νs

2

]
∥w̄ −wt−1∥2 −

1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+

B

2Cst−1

, (3.77)

where (a) follows from the RSC condition, and the fact that st−1 ∈ N∗.
Now recall that we have taken η = 1

Ls+C
, and let us define α := C

Ls
+ 1. Then

C = (α− 1)Ls, and η = 1
αLs

. Also recall that κs =
Ls

νs
.

We can simplify the inequality above into:

E[R(wt)|wt−1]−R(w̄)

112

≤ 1

2η

[(
1− 1

ακs

)
∥w̄ −wt−1∥2 − E

[
∥wt − w̄∥2|wt−1

]
+
√

βE
[
∥vt − w̄∥2|wt−1

]
+

ηB

Cst−1

]
.

(3.78)

We now take the expectation over wt−1 of the above inequality (i.e. we take Ewt−1 [·]):
using the law of total expectation (E[·] = Ewt−1 [E[·|wt−1]]) we obtain:

ER(wt)−R(w̄) ≤ 1

2η

[(
1− 1

ακs

)
E∥w̄ −wt−1∥2 − E∥wt − w̄∥2

+
√

βE∥vt − w̄∥2 + ηB

Cst−1

]
. (3.79)

Additionally, in view of equation 3.60 applied at vt instead of wt, (since vt here
corresponds to the wt from Section 3.7.2.2, i.e. vt is the hard-thresholding of an iterate
after a gradient step), we know that:

ER(vt)−R(w̄) ≤ 1

2η

[(
1− 1

ακs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2 + ηB

Cst−1

]
.

(3.80)

We now take a convex combination similarly as in the case without additional constraint
(section 3.5.2), for some ρ ∈ (0, 1).

E(1− ρ)R(wt) + ρR(vt)

≤R(w̄) +
1

2η

[(
1− 1

ακs

)
E∥w̄ −wt−1∥2 − (1− ρ)E∥wt − w̄∥2

+
(
(1− ρ)

√
β − (1−

√
β)ρ
)
E∥vt − w̄∥2 + ηB

Cst−1

]
=R(w̄) +

1

2η

[(
1− 1

ακs

)
E∥w̄ −wt−1∥2 − (1− ρ)E∥wt − w̄∥2

−
(
ρ−

√
β
)
E∥vt − w̄∥2 + ηB

Cst−1

]
(b)

≤R(w̄) +
1

2η

[(
1− 1

ακs

)
E∥w̄ −wt−1∥2 − (1− ρ)E∥wt − w̄∥2

−
(
ρ−

√
β
)
E∥wt − w̄∥2 + ηB

Cst−1

]
=R(w̄) +

1

2η

[(
1− 1

ακs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2 + ηB

Cst−1

]
, (3.81)

113

where in (b), we have assumed that
√
β ≤ ρ (later we will verify that our choice of k ensures

such a condition), and have used the fact that projection onto a convex set is non-expansive
(which implies that ∥vt − w̄∥2 ≥ ∥wt − w̄∥2). Similarly as in 3.7.2.2, we now take a
weighted sum over t = 1, ..., T , to obtain:

T∑
t=1

2η

(
1− 1

ακs

1−√β

)T−t

E[(1− ρ)R(wt) + ρR(vt)−R(w̄)]

≤
T∑
t=1

(
1− 1

ακs

1−√β

)T−t [(
1− 1

ακs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2 + ηB

Cst−1

]

=
T∑
t=1

(
1− 1

ακs

1−√β

)T−t [(
1− 1

ακs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2

]

+
T∑
t=1

(
1− 1

ακs

1−√β

)T−t
ηB

Cst−1

=(1−
√

β)
T∑
t=1

(1− 1
ακs

1−√β

)T−t+1

E∥w̄ −wt−1∥2 −
(
1− 1

ακs

1−√β

)T−t

E∥wt − w̄∥2

+
T∑
t=1

(
1− 1

ακs

1−√β

)T−t
ηB

Cst−1

(a)
=(1−

√
β)

(1− 1
ακs

1−√β

)T

∥w̄ −w0∥2 − E∥wT − w̄∥2
+

T∑
t=1

(
1− 1

ακs

1−√β

)T−t
ηB

Cst−1

≤(1−
√

β)

(
1− 1

ακs

1−√β

)T

∥w̄ −w0∥2 +
T∑
t=1

(
1− 1

ακs

1−√β

)T−t
ηB

Cst−1

≤
(
1− 1

ακs

1−√β

)T

∥w̄ −w0∥2 +
T∑
t=1

(
1− 1

ακs

1−√β

)T−t
ηB

Cst−1

, (3.82)

where (a) follows from simplifying the telescopic sum.
We now choose k and st as follows: we choose k ≥ 4 1

ρ2
α2κ2

sk̄, which implies that:

ρ ≥ √β (thereby verifying the assumption made earlier), and that:

√
β ≤ 1

2α 1
ρ
κs

=⇒
√

β ≤ 1

2α 1
ρ
κs − 1

=⇒ 1−
√
β ≥ 1− 1

2α 1
ρ
κs − 1

=
2α 1

ρ
κs − 2

2α 1
ρ
κs − 1

=
1− 1

α 1
ρ
κs

1− 1
2α 1

ρ
κs

(a)

≥
1− 1

ακs

1− 1
2α 1

ρ
κs

114

=⇒
(
1− 1

ακs

1−√β

)
≤ 1− 1

2α 1
ρ
κs

, (3.83)

where (a) follows from the fact that ρ ≤ 1.

And we now choose st :=
⌈

τ
ωt

⌉
, with ω := 1− 1

4α 1
ρ
κs

and τ := ηB
C

.

Let us call ν := 1− 1
2α 1

ρ
κs

. Note that we have:

ν ≤ ω. (3.84)

And that we have the inequality below:

ν

ω
=

1− 1
2α 1

ρ
κs

1− 1
4α 1

ρ
κs

=
4α 1

ρ
κs − 2

4α 1
ρ
κs − 1

= 1− 1

4α 1
ρ
κs − 1

≤ 1− 1

4α 1
ρ
κs

= ω. (3.85)

This allows us to simplify equation 3.82 into:

E
T∑
t=1

2η

(
1− 1

ακs

1−√β

)T−t

[(1− ρ)R(wt) + ρR(vt)−R(w̄)]

≤ νT∥w̄ −w0∥2 +
T∑
t=1

νT−tωt−1

= νT∥w̄ −w0∥2 +
ωT

ω

T∑
t=1

(ν
ω

)T−t

= νT∥w̄ −w0∥2 +
ωT

ω

1−
(
ν
ω

)T
1−

(
ν
ω

) (3.86)

≤ νT∥w̄ −w0∥2 +
ωT

ω

1

1−
(
ν
ω

)
(a)

≤ νT∥w̄ −w0∥2 +
ωT

ω

1

1− ω
(b)

≤ νT∥w̄ −w0∥2 +
4

3
ωT 1

1− ω
(c)

≤ ωT∥w̄ −w0∥2 +
4

3
ωT 1

1− ω
(d)

≤ ωT

1− ω
∥w̄ −w0∥2 +

4

3
ωT 1

1− ω

=
ωT

1− ω

(
∥w̄ −w0∥2 +

4

3

)
= 4α

1

ρ
κsω

T

(
∥w̄ −w0∥2 +

4

3

)
, (3.87)

115

where in the left hand side we have used the linearity of expectation, and where (a) uses
equation 3.85, (b) uses the fact that 1

ω
= 1

1− 1

4α 1
ρκs

≤ 1
1− 1

4

= 4
3

(since κs ≥ 1 and α ≥ 1

(indeed, from the theorem’s assumption α = C
Ls

+ 1 with C > 0), so consequently α 1
ρ
≥ 1),

(c) uses equation 3.84, and (d) uses the fact that ω < 1 so 1 < 1
1−ω

.

Let us now normalize the above inequality:

E

∑T
t=1 2η

(
1− 1

ακs

1−
√
β

)T−t

(1− ρ)R(wt) + ρR(vt)

∑T
t=1 2η

(
1− 1

ακs

1−
√
β

)T−t
≤ R(w̄) +

4α 1
ρ
κsω

T
(
∥w̄ −w0∥2 + 4

3

)
∑T

t=1 2η

(
1− 1

ακs

1−
√
β

)T−t
.

(3.88)
The left hand side above is a weighted sum, which is an upper bound on the smallest term
of the sum.

Regarding the right hand side, we can simplify it using the fact that 0 <

(
1− 1

ακs

1−
√
β

)
, and

therefore:
T∑
t=1

(
1− 1

ακs

1−√β

)T−t

≥ 1. (3.89)

Therefore, we obtain:

E min
t∈{1,..,T}

(1− ρ)R(wt) + ρR(vt)−R(w̄) ≤
4α 1

ρ
κsω

T
(
∥w̄ −w0∥2 + 4

3

)
2η

= 2α2 1

ρ
Lsκsω

T

(
∥w̄ −w0∥2 +

4

3

)
. (3.90)

We denote by εT the right-hand side above:

εT = 2α2 1

ρ
Lsκsω

T

(
∥w̄ −w0∥2 +

4

3

)
. (3.91)

We now proceed similarly as in the proof of Theorem 4 above. Recall that we have assumed
in the Assumptions of Theorem 7, without loss of generality, that R is non-negative, which
implies that R (vt) ≥ 0. Plugging this in equation 3.90 implies that:

Emin
t∈[T]

R (wt) ≤
1

1− ρ
R(w̄) +

εT
1− ρ

≤ (1 + 2ρ)R(w̄) +
εT

1− ρ
. (3.92)

Plugging the change of variable ε′T = εT
1−ρ

into equation 3.92 above, we obtain that:

Emin
t∈[T]

R (wt) ≤ (1 + 2ρ)R(w̄) + ε′T . (3.93)

116

Further, consider an ideal case where w̄ is a global minimizer of R over B0(k) :=
{w : ∥w∥0 ≤ k}. Then R (vt) ≥ R(w̄) is always true for all t ≥ 1. It follows that
the bound in equation 3.92 yields:

Emin
t∈[T]
{(1− ρ)R (wt) + ρR(w̄)} ≤ Emin

t∈[T]
{(1− ρ)R (wt) + ρR (vt)} ≤ R(w̄) + εT ,

which implies: Emint∈[T]R (wt) ≤ R(w̄) + εT
1−ρ

. In this case, we can simply set ρ = 0.5,
and define ε′T = εT

1−ρ
= 2εT similarly as above.. The proof is completed.

3.7.3 Proof of Corollary 3

Proof of Corollary 3. We proceed similarly as in the proof of Corollary 5 in Section 3.7.2.2:

Let ε ∈ R∗
+. Let us find T to ensure that Emint∈{1,..,T}(1−ρ)R(wt)+ρR(vt)−R(w̄) ≤ ε

This will be enforced if:

2α2 1

ρ
Lsκsω

T

(
∥w̄ −w0∥2 +

4

3

)
≤ ε

⇐⇒ T log(ω) ≤ log

(
ε

2α2 1
ρ
Lsκs

(
∥w̄ −w0∥2 + 4

3

))

⇐⇒ T ≥ 1

log(1
ω
)
log

(
2α2 1

ρ
Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)
. (3.94)

Therefore, let us take:

T :=

⌈
1

log(1
ω
)
log

(
2α2 1

ρ
Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)⌉
. (3.95)

We can now derive the #IFO and #HT. First, we have one hard-thresholding operation at
each iteration, therefore #HT= T . Using the fact that 1

log(1
ω
)
= 1

− log(ω)
= 1

− log(1− 1

4α 1
ρκs

)
≤

1
1

4α 1
ρκs

= 4α 1
ρ
κs (since by property of the logarithm, for all x ∈ (−∞,−1) : log(1− x) ≤ −x

), we obtain that #HT = O(κs log
(
1
ε

)
).

We now turn to computing the #IFO. At each iteration t we have st gradient evaluations,
therefore:

#IFO =
T−1∑
t=0

st

≤
T−1∑
t=0

(τ

ωt
+ 1
)

117

= T + τ

(
1
ω

)T − 1
1
ω
− 1

≤ T +
τ

1
ω
− 1

(
1

ω

)T

= T +
τ

1
ω
− 1

exp

(
T log

(
1

ω

))
(a)

≤ 1 +
1

log(1
ω
)
log

(
2α2 1

ρ
Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)

+
τ

1
ω
− 1

exp

(
log

(
1

ω

)[
1

log(1
ω
)
log

(
2α2 1

ρ
Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)
+ 1

])

= 1 +
1

log(1
ω
)
log

(
2α2 1

ρ
Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)
+

τ
ω

1
ω
− 1

2α2 1
ρ
Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

= 1 +
1

log(1
ω
)
log

(
2α2 1

ρ
Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)
+

τ

1− ω

2α2 1
ρ
Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

= 1 +
1

log(1
ω
)
log

(
2α2 1

ρ
Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)
+ τ

8α3 1
ρ2
Lsκ

2
s

(
∥w̄ −w0∥2 + 4

3

)
ε

(b)
= 1 +

1

log(1
ω
)
log

(
2α2 1

ρ
Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)

+
B

αLs

1

Ls(α− 1)

8α3 1
ρ2
Ls

ε

Ls

νs
κs

(
∥w̄ −w0∥2 +

4

3

)
= 1 +

1

log(1
ω
)
log

(
2α2 1

ρ
Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)
+

8Bα2 1
ρ2
κs

(
∥w̄ −w0∥2 + 4

3

)
(α− 1)νs

1

ε
,

(3.96)

where (a) follows from equation 3.95, and for (b) we recall that τ = ηB
C

, η = 1
αLs

and
C = Ls(α− 1). Therefore, overall, the IFO complexity is in O(κs

νsε
).

3.7.4 Proof of Theorems 8 and 9

Our proof for Theorem 9 is similar to the one for Theorem 7, though we needed to refine
some results from [46] to properly express the variance of the ZO gradient estimator and
incorporate it into the telescopic sum. Before proving the main Theorem 9, below we
provide several intermediary results needed for the proof of Theorem 9. Then, the proof of
Theorem 7 will be provided in Section 3.7.4.3.

118

3.7.4.1 Useful Lemmas

We first recall the following results from [46]:

Proposition 2 (Proposition 1 (i) [46]). Let us consider any support F ⊆ [d] of size s
(|F | = s). For the Z0 gradient estimator gt in Algorithm 9 at wt, with qt random directions,
and random supports of size s2, and assuming that R is (Ls2 , s2)-RSS’ , we have, with [u]F
denoting the hard thresholding of a vector u on F (that is, we set all coordinates not in F
to 0):

∥[Egt]F − [∇R(wt)]F∥2 ≤ εµµ
2 (3.97)

with εµ := L2
s2
sd

Proof of Proposition 2. Proof in [46].

Lemma 17 (Lemma C.2 [46]). For any (Ls2 , s2)-RSS’ function R, using the gradient
estimator gt defined in Algorithm 9 with qt = 1, we have, for any support F ⊆ [d], with
|F | = s, and F c := [d] \ F :

E∥[gt]F∥2 = εF ∥[∇R(wt)]F∥2 + εF c ∥[∇R(wt)]F c∥2 + εabsµ
2 (3.98)

with:
(i) εF := 2d

(s2+2)

(
(s−1)(s2−1)

d−1
+ 3
)

(ii) εF c := 2d
(s2+2)

(
s(s2−1)
d−1

)
(iii) εabs := 2dL2

sss2

(
(s−1)(s2−1)

d−1
+ 1
)
.

Proof of Lemma 17. Proof in [46].

We now use the above lemma to bound the variance of the zeroth-order gradient
estimator gt.

Lemma 18. The gradient estimator gt defined in Algorithm 9 verifies the following proper-
ties for any qt ∈ N∗:

E∥[gt]F − E[gt]F∥2 ≤
εF
qt
∥∇R(w)∥2 + εabs

qt
µ2 (3.99)

with εF and εabs defined above in Lemma 17

Proof of Lemma 18. If qt = 1, we have:

E∥[gt]F − E[gt]F∥2
(a)
= E∥[gt]F∥2 − ∥[Eg]F∥2
≤ E∥[gt]F∥2
(3.98)

≤ εF∥[∇R(w)]F∥2 + εF c∥[∇R(w)]F c∥2 + εabsµ
2

(b)

≤ εF∥∇R(w)∥2 + εabsµ
2, (3.100)

119

where (a) follows from the bias-variance formula E∥X − E[X]∥22 = E∥X∥22 − ∥EX∥22 for
a multidimensional random variable X, and (b) follows from the fact that

εF =
2d

s2 + 2

(
s(s2 − 1)

d− 1
+ 3− s2 − 1

d

)
>

2d

s2 + 2

(
s(s2 − 1)

d− 1

)
= εF c (3.101)

(since s2 ≤ d), and since ∥[∇R(w)]F∥2 + ∥[∇R(w)]F c∥2 = ∥∇R(w)∥2 (by definition of the
Euclidean norm).

Now, if qt ≥ 1, we know that the variance of an average of qt i.i.d. realizations of a
random variable of total variance σ2 is σ2

qt
(and its expected value remains the same by

linearity of expectation): indeed, for any random multidimensional random variable X, for
which we consider the q i.i.d. random variables Xi of same distribution, we have:

E

∥∥∥∥∥ 1qt
qt∑
i=1

Xi − E

[
1

qt

qt∑
i=1

Xi

]∥∥∥∥∥
2

2

= E

∥∥∥∥∥ 1qt
qt∑
i=1

(Xi − EXi)

∥∥∥∥∥
2

2

=
1

q2t

(
qt∑
i=1

(Xi − EXi)

)⊤(qt∑
i=1

(Xi − EXi)

)
(a)
=

1

q2t

qt∑
i=1

∥Xi − EXi∥22

=
1

q2t

qt∑
i=1

∥X − EX∥22

=
1

q2t
qt∥X − EX∥22

=
1

qt
∥X − EX∥22, (3.102)

where (a) follows from the fact that Xi are i.i.d hence for i ̸= j: Cov(Xi, Xj) = E(Xi −
EXi)

⊤(Xj − EXj) = 0. Applying this to the random variable which realizations are [gt]F ,
this concludes the proof.

3.7.4.2 Proof of Theorem 8

Below we now first present some results (and their proofs) for the convergence of Algorithm
9 without the additional constraint, which is needed for the proof of Theorem 9, and also,
as a byproduct, provides, up to our knowledge, the first convergence guarantee in objective
value without system error for a zeroth-order hard-thresholding algorithm.

Proof of Theorem 8. Let us denote for simplicity: C1 := εF
qt

, C2 := εabs
qt

, and C3 := εµµ
2.

Moreover, let us denote F := supp(wt) ∪ supp(wt−1) ∪ supp(w̄), where supp denotes the
support of a vector, i.e. the set of coordinates of its non-zero components. Note that

120

therefore we have |F | ≤ 2k + k̄ ≤ 3k. In addition [u]F denotes the thresholding of u to the
support F , that is, the vector u with its components that are not in F set to 0.

The fact that R is (Ls′ , s
′)-RSS’, therefore also (Ls′ , s)-RSS’, implies from the remark in

11 that it is also (Ls′ , s)-RSS, therefore:

R(wt)

≤R(wt−1) + ⟨∇R(wt−1),wt −wt−1⟩+
Ls′

2
∥wt −wt−1∥2

=R(wt−1) + ⟨gt−1,wt −wt−1⟩+
Ls′

2
∥wt −wt−1∥2 + ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

=R(wt−1) +
1

2η

[
∥wt − (wt−1 − ηgt−1)∥2 − η2∥gt−1∥2 − ∥wt −wt−1∥2

]
+

Ls′

2
∥wt −wt−1∥2

+ ⟨∇R(wt−1)− gt−1,wt −wt−1⟩ (3.103)

=R(wt−1) +
1

2η
∥wt − (wt−1 − ηgt−1)∥2 −

η

2
∥gt−1∥2 +

[
Ls′ − 1

η

2

]
∥wt −wt−1∥2

+ ⟨[∇R(wt−1)− gt−1]F ,wt −wt−1⟩
(a)

≤R(wt−1) +
1

2η

[
∥w̄ − (wt−1 − ηgt−1)∥2 − (1−

√
β)∥wt − w̄∥2

]
− η

2
∥gt−1∥2

+

[
Ls′ − 1

η

2

]
∥wt −wt−1∥2 + ⟨[∇R(wt−1)− gt−1]F ,wt −wt−1⟩

=R(wt−1) +
1

2η

[
∥w̄ −wt−1∥2 + η2∥gt−1∥2 − 2⟨ηgt−1,wt−1 − w̄⟩

]
− 1

2η
(1−

√
β)∥wt − w̄∥2

− η

2
∥gt−1∥2 +

[
Ls′ − 1

η

2

]
∥wt −wt−1∥2 + ⟨[∇R(wt−1)− gt−1]F ,wt −wt−1⟩

=R(wt−1) +
1

2η

[
∥w̄ −wt−1∥2 − 2⟨ηgt−1,wt−1 − w̄⟩

]
− 1

2η
(1−

√
β)∥wt − w̄∥2

+

[
Ls′ − 1

η

2

]
∥wt −wt−1∥2 + ⟨[∇R(wt−1)− gt−1]F ,wt −wt−1⟩

(b)
=R(wt−1) +

1

2η
∥w̄ −wt−1∥2 − ⟨gt−1,wt−1 − w̄⟩ − 1

2η
(1−

√
β)∥wt − w̄∥2

+

[
Ls′ − 1

η
+ C

2

]
∥wt −wt−1∥2 +

1

2C
∥[∇R(wt−1)− gt−1]F∥2

=R(wt−1) +
1

2η
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩+ ⟨[∇R(wt−1)− gt−1]F ,wt−1 − w̄⟩

− 1

2η
(1−

√
β)∥wt − w̄∥2 +

[
Ls′ − 1

η
+ C

2

]
∥wt −wt−1∥2 +

1

2C
∥[∇R(wt−1)− gt−1]F∥2,

(3.104)

where (a) follows from Lemma 11 and (b) follows from the inequality ⟨a, b⟩ ≤ C
2
a2 + 1

2C
b2,

for any (a, b) ∈ (Rd)2 with C > 0 an arbitrary strictly positive constant.

121

Let us now choose η := 1
Ls′+C

: therefore the term
[
Ls′−

1
η
+C

2

]
∥wt − wt−1∥2 above is

0. We now take the conditional expectation (conditioned on wt−1, which is the random
variable which realizations are wt−1), on both sides, and from Lemma 16 we obtain the
inequality below (we slightly abuse notations and denote E[·|wt−1 = wt−1] by E[·|wt−1]):

E[R(wt)|wt−1] (3.105)

≤R(wt−1) +
1

2η
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+ ⟨[∇R(wt−1)− E [gt−1|wt−1]]F ,wt−1 − w̄⟩

+ E
[

1

2C
∥[∇R(wt−1)− gt−1]F∥2|wt−1

]
(a)

≤R(wt−1) +
1

2η
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

G

2
∥[∇R(wt−1)− E[gt−1|wt−1]]F∥2

+
1

2G
∥wt−1 − w̄∥2 + 1

2C
E
[
∥∇R(wt−1)− gt−1∥2|wt−1

]
=R(wt−1) +

[
1

2η
+

1

2G

]
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

G

2
∥[∇R(wt−1)− E[gt−1|wt−1]]F∥2

+
1

2C
E
[
∥[∇R(wt−1)− gt−1]F∥2|wt−1

]
(b)

≤R(wt−1) +

[
1

2η
+

1

2G

]
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

G

2
∥[∇R(wt−1)− E[gt−1|wt−1]]F∥2

+
1

2C

(
2∥[∇R(wt−1)− E[gt−1|wt−1]]F∥2 + 2∥[gt−1 − E[gt−1|wt−1]]F∥2

)
(3.97)+(3.99)

≤ R(wt−1) +

[
1

2η
+

1

2G

]
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

G

2
C3

+
1

2C

(
2C3 + 2C1∥∇R(wt−1)∥2 + 2C2µ

2
)

(c)

≤R(wt−1) +

[
1

2η
+

1

2G

]
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩ (3.106)

− 1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

G

2
C3 (3.107)

122

+
1

2C

(
2C1

(
2∥∇R(wt−1)−∇R(w̄)∥2 + 2∥∇R(w̄)∥2

)
+ 2C2µ

2 + 2C3

)
(3.108)

(d)

≤R(wt−1) +

[
1

2η
+

1

2G

]
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩ (3.109)

− 1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

G

2
C3 (3.110)

+
1

2C

(
2C1

(
2L2

s′∥wt−1 − w̄∥2 + 2∥∇R(w̄)∥2
)
+ 2C2µ

2 + 2C3

)
(3.111)

=R(wt−1) +

[
1

2η
+

1

2G
+

2C1L
2
s′

C

]
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

(3.112)

− 1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

G

2
C3 +

1

C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

)
(3.113)

(e)

≤R(wt−1) +

[
1

2η
+

1

2G
+

2C1L
2
s′

C

]
∥w̄ −wt−1∥2 (3.114)

+
[
R(w̄)−R(wt−1)−

νs
2
∥wt−1 − w̄∥2

]
(3.115)

− 1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

G

2
C3 +

1

C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

)
(3.116)

=R(w̄) +

[
1
η
− νs

2
+

1

2G
+

2C1L
2
s′

C

]
∥w̄ −wt−1∥2 (3.117)

− 1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

G

2
C3 +

1

C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

)
(3.118)

(f)

≤R(w̄) +

[
1
η
− νs

2
+

1

2G
+

2εFL
2
s′

τC

]
∥w̄ −wt−1∥2 (3.119)

− 1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

G

2
C3 +

1

C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

)
,

(3.120)

where (a) follows from the inequality ⟨a, b⟩ ≤ G
2
a2 + 1

2G
b2, for any (a, b) ∈ (Rd)2 with

G > 0 an arbitrary strictly positive constant, (b) and (c) follow from the inequality
∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2 for any (a, b) ∈ (Rd)2, (d) follows from the fact that R is (Ls′ , s

′)-
RSS’ (Assumption 11 with sparsity level s′), therefore it is also (Ls′ , s2)-RSS’, (e) follows
from the RSC condition, and for (f), we recall that C1 =

εF
qt

, and we define qt =
⌈

τ
ωt

⌉
, for

some ω > 1 and τ > 0 that will be chosen later in the proof. Recall that we have chosen
η = 1

Ls′+C
. Let us define α := C

Ls′
+ 1. Then C = (α− 1)Ls′ , and η = 1

αLs′
. Also recall that

κs =
Ls′
νs

.

We will now choose the constant G and C, in order to simplify the inequality above,
such that it matches as much as possible the structure of the previous proofs:

123

We will seek to rewrite:[
1
η
−νs

2
+ 1

2G
+

2
εF
τ

L2
s′

C

](
= 1

2η

[
1 + 1

GαLs′
+

4L2
s′

εF
τ

(α−1)αL2
s′
− 1

ακs

])
, into :

1
2η

[
1− 1

α′κs

]
for some α′ > 0 (we will seek α′ ∝ α, with a dimensionless proportionality

constant for simplicity).

Therefore, let us choose G := 4
νs

, which implies:

1

GαLs′
=

1

4ακs

. (3.121)

And let us choose τ := 16κsεF
(α−1)

, which implies:

4L2
s′

εF
τ

(α− 1)αL2
s′
=

1

4ακs

. (3.122)

Therefore, using equations 3.121 and 3.122, we obtain:[
1
η
− νs

2
+

1

2G
+

2 εF
τ
L2
s′

C

]
=

1

2η

[
1 +

1

GαLs′
+

4L2
s′

εF
τ

(α− 1)αL2
s′
− 1

ακs

]
=

1

2η

[
1 +

1

4ακs

+
1

4ακs

− 1

ακs

]
=

1

2η

[
1− 1

2ακs

]
=

1

2η

[
1− 1

α′κs

]
, (3.123)

where for simplicity we have denoted α′ = 2α. We can therefore simplify (3.120) into:

E[R(wt)|wt−1]−R(w̄) ≤ 1

2η

[(
1− 1

α′κs

)
∥w̄ −wt−1∥2 − (1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+2η

(
G

2
C3 +

1

C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

))]
. (3.124)

We now take the expectation over wt−1 of the above inequality (i.e. we take Ewt−1 [·]): using
the law of total expectation (E[·] = Ewt−1 [E[·|wt−1]]) we obtain:

ER(wt)−R(w̄) ≤ 1

2η

[(
1− 1

α′κs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2

+2η

(
G

2
C3 +

1

C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

))]
(3.125)

Let us call A := 2η
(
G
2
C3 +

1
C
(2C1∥∇R(w̄)∥2 + C2µ

2 + C3)
)

for simplicity. Similarly as
in [90], we now take a weighted sum over t = 1, ..., T , to obtain:

T∑
t=1

2η

(
1− 1

α′κs

1−√β

)T−t

E[R(wt)−R(w̄)]

124

≤
T∑
t=1

(
1− 1

α′κs

1−√β

)T−t [(
1− 1

α′κs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2 + A

]

=
T∑
t=1

(
1− 1

α′κs

1−√β

)T−t [(
1− 1

α′κs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2

]

+
T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

A

=(1−
√

β)
T∑
t=1

(1− 1
α′κs

1−√β

)T−t+1

E∥w̄ −wt−1∥2 −
(
1− 1

α′κs

1−√β

)T−t

E∥wt − w̄∥2

+
T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

A

(a)
=(1−

√
β)

(1− 1
α′κs

1−√β

)T

∥w̄ −w0∥2 − E∥wT − w̄∥2
+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

A

≤(1−
√
β)

(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2 +
T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

A

≤
(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2 +
T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

A

=

(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2

+
T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2η

(
G

2
C3 +

1

C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

))

=

(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2

+
T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2η

(
G

2
C3 +

1

C

(
2
εF
qt
∥∇R(w̄)∥2 + εabsµ

2

qt
+ C3

))

=

(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2 +
T∑
t=1

(
1− 1

α′κs

1−√β

)T−t
2η

qt

(
2εF∥∇R(w̄)∥2 + εabsµ

2

C

)

+
T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηC3

(
G

2
+

1

C

)

=

(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2 +
T∑
t=1

(
1− 1

α′κs

1−√β

)T−t
2η

qt

(
2εF∥∇R(w̄)∥2

C

)

125

+
T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηµ2

(
εµ

(
G

2
+

1

C

)
+

εabs
Cqt

)

≤
(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2 +
T∑
t=1

(
1− 1

α′κs

1−√β

)T−t
2η

qt

(
2εF∥∇R(w̄)∥2

C

)

+
T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηµ2

(
εµ

(
G

2
+

1

C

)
+

εabs
C

)
, (3.126)

where (a) follows from simplifying the telescopic sum. Let us denote for simplicity ζ :=
2η(2εF ∥∇R(w̄)∥2)

C
= 4ηεF ∥∇R(w̄)∥2

C
and Z := εµ

(
G
2
+ 1

C

)
+ εabs

C
.

We now choose k and qt as follows: we choose k ≥ 4α′2κ2
sk̄, which implies that:√

β ≤ 1

2α′κs

=⇒
√
β ≤ 1

2α′κs − 1

=⇒ 1−
√

β ≥ 1− 1

2α′κs − 1
=

2α′κs − 2

2α′κs − 1
=

1− 1
α′κs

1− 1
2α′κs

=⇒
(
1− 1

α′κs

1−√β

)
≤ 1− 1

2α′κs

. (3.127)

We recall that we previously defined qt =
⌈

τ
ωt

⌉
, with τ := 16κsεF

(α−1)
. We now set the value of

ω, to ω := 1− 1
4α′κs

.

Let us call ν := 1− 1
2α′κs

. Note that we have:

ν ≤ ω. (3.128)

And that we have the inequality below:

ν

ω
=

1− 1
2α′κs

1− 1
4α′κs

=
4α′κs − 2

4α′κs − 1
= 1− 1

4α′κs − 1
≤ 1− 1

4α′κs

= ω. (3.129)

This allows us to simplify equation 3.126 into:

E

 T∑
t=1

2η

(
1− 1

α′κs

1−√β

)T−t

[R(wt)−R(w̄)]

≤ νT∥w̄ −w0∥2 +

ζ

τ

T∑
t=1

νT−tωt−1 +
T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

126

= νT∥w̄ −w0∥2 +
ζ

τ

ωT

ω

T∑
t=1

(ν
ω

)T−t

+
T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

= νT∥w̄ −w0∥2 +
ζ

τ

ωT

ω

1−
(
ν
ω

)T
1−

(
ν
ω

) +
T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

≤ νT∥w̄ −w0∥2 +
ζ

τ

ωT

ω

1

1−
(
ν
ω

) + T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

(a)

≤ νT∥w̄ −w0∥2 +
ζ

τ

ωT

ω

1

1− ω
+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

(b)

≤ νT∥w̄ −w0∥2 +
ζ

τ

4

3
ωT 1

1− ω
+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

(c)

≤ ωT∥w̄ −w0∥2 +
ζ

τ

4

3
ωT 1

1− ω
+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

(d)

≤ ωT

1− ω
∥w̄ −w0∥2 +

ζ

τ

4

3
ωT 1

1− ω
+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

=
ωT

1− ω

(
∥w̄ −w0∥2 +

ζ

τ

4

3

)
+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

= 4α′κsω
T

(
∥w̄ −w0∥2 +

ζ

τ

4

3

)
+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2, (3.130)

where in the left hand side we have used the linearity of expectation, and where (a) uses
equation 3.129, (b) uses the fact that 1

ω
= 1

1− 1
4α′κs

≤ 1
1− 1

4

= 4
3

(since κs ≥ 1 and α′ ≥ 1

(indeed, we have α′ = 2α = 2(C
Ls′

+ 1) with C > 0)), (c) uses equation 3.128, and (d) uses
the fact that ω < 1 so 1 < 1

1−ω
.

Let us now normalize the above inequality:

E

∑T
t=1 2η

(
1− 1

α′κs
1−

√
β

)T−t

R(wt)

∑T
t=1 2η

(
1− 1

α′κs
1−

√
β

)T−t
≤ R(w̄) +

4α′κsω
T
(
∥w̄ −w0∥2 + 4

3
ζ
τ

)
∑T

t=1 2η

(
1− 1

α′κs
1−

√
β

)T−t
+ Zµ2. (3.131)

The left hand side above is a weighted sum, which is an upper bound on the smallest
term of the sum.

Regarding the right hand side, we can simplify it using the fact that 0 <

(
1− 1

α′κs
1−

√
β

)
,

127

and therefore:
T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

≥ 1. (3.132)

Therefore, we obtain:

E min
t∈{1,..,T}

R(wt)−R(w̄) ≤ 4α′κsω
T
(
∥w̄ −w0∥2 + 4

3
ζ
τ

)
2η

+ Zµ2

= 4α2Ls′κsω
T

(
∥w̄ −w0∥2 +

4

3

ζ

τ

)
+ Zµ2. (3.133)

Which can be simplified into the expression below, using the definition of ŵT :

ER(ŵT)−R(w̄) ≤ 4α2Ls′κsω
T

(
∥w̄ −w0∥2 +

4

3

ζ

τ

)
+ Zµ2. (3.134)

To simplify the above result, we recall the assumptions made earlier on: we have chosen
τ = 16κsεF

(α−1)
, and G = 4

νs
.

Therefore, to sum up, we have:

Z = εµ

(
G

2
+

1

C

)
+

εabs
C

= εµ

(
2

νs
+

1

C

)
+

εabs
C

. (3.135)

ω = 1− 1

4α′κs

= 1− 1

8ακs

(3.136)

ζ =
4ηεF∥∇R(w̄)∥2

C
(3.137)

The last inequality implies: ζ
τ
=

4ηεF ∥∇R(w̄)∥2
C

16κsLs′
εF
C

= η∥∇R(w̄)∥2
4κsLs′

.

Corollary 6. Additionally, the number of calls to the function R (#IZO), and the number of
hard thresholding operations (#HT) such that the upper bound in Theorem 7 above is smaller
than ε+Zµ, with ε > 0 are respectively: #HT = O(κs log(

1
ε
)) and #IZO = O

(
εF κ3

sLs

ε

)
.

Note that if s2 = d, we have εF = O(s) = O(k), and therefore we obtain a query complexity
that is dimension independent.

Proof of Corollary 6. Let ε ∈ R∗
+. Let us find T to ensure that ER(ŵT)−R(w̄) ≤ ε+Zµ2

This will be enforced if:

4α2Ls′κsω
T

(
∥w̄ −w0∥2 +

4

3

η∥∇R(w̄)∥2
4κsLs′

)
≤ ε

128

⇐⇒ T log(ω) ≤ log

 ε

4α2Ls′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)

⇐⇒ T ≥ 1

log(1
ω
)
log

4α2Ls′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

 . (3.138)

Therefore, let us take:

T :=

 1

log(1
ω
)
log

4α2Ls′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

 . (3.139)

We can now derive the #IZO and #HT. First, we have one hard-thresholding operation
at each iteration, therefore #HT= T . Using the fact that 1

log(1
ω
)
= 1

− log(ω)
= 1

− log(1− 1
8ακs

)
≤

1
1

8ακs

= 8ακs (since by property of the logarithm, for all x ∈ (−∞,−1) : log(1− x) ≤ −x),

and the fact that α = C
Ls′

is independent of κs, we obtain that #HT = O(κs log
(
1
ε

)
).

We now turn to computing the #IZO. At each iteration t we have qt function evaluations,
therefore:

#IFO =
T−1∑
t=0

qt

≤
T−1∑
t=0

(τ

ωt
+ 1
)

= T + τ

(
1
ω

)T − 1
1
ω
− 1

≤ T +
τ

1
ω
− 1

(
1

ω

)T

= T +
τ

1
ω
− 1

exp

(
T log

(
1

ω

))
(a)

≤ 1 +
1

log(1
ω
)
log

4α2Ls′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

+

τ
1
ω
− 1

exp

log

(
1

ω

) 1

log(1
ω
)
log

4α2Ls′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

+ 1

= 1 +

1

log(1
ω
)
log

4α2Ls′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

129

+
τ
ω

1
ω
− 1

4α2Ls′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

= 1 +
1

log(1
ω
)
log

4α2Ls′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

+

τ

1− ω

4α2Ls′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

(3.140)

= 1 +
1

log(1
ω
)
log

4α2Ls′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

+ τ

32α3Ls′κ
2
s

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

, (3.141)

where (a) follows from equation 3.139.

And we recall that τ := 16κsεF
(α−1)

, which implies that:

τ
32α3Ls′κ

2
s

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2
2γκsLs′

)
ε

= O
(
εF
ε

(
κ3
sLs′ +

κs

νs

))
.

Therefore, overall, the # IZO complexity is in O
(
εF
ε
κ3
sLs′

)
.

3.7.4.3 Proof of Theorem 9

Using the results above, we can now proceed to the proof of Theorem 9.

Proof of Theorem 9. Let us denote for simplicity: C1 := εF
qt

, C2 := εabs
qt

, and C3 := εµµ
2.

Moreover, let us denote F := supp(wt) ∪ supp(wt−1) ∪ supp(w̄), where supp denotes the
support of a vector, i.e. the set of coordinates of its non-zero components. Note that
therefore we have |F | ≤ 2k + k̄ ≤ 3k. In addition [u]F denotes the thresholding of u to the
support F , that is, the vector u with its components that are not in F set to 0. Since R is
Ls′-RSS’, with s′ = max(s2, s), R is also s-RSS’ and s2-RSS’, with Lipschitz constant Ls′ .

Denote vt = Hk(wt−1 − η∇R(wt−1)) for any t ∈ N. The fact that R is (Ls′ , s
′)-RSS’,

therefore also (Ls′ , s)-RSS’, implies from the remark in Assumption 11 that it is also
(Ls′ , s)-RSS, therefore:

R(wt)

≤R(wt−1) + ⟨∇R(wt−1),wt −wt−1⟩+
Ls

2
∥wt −wt−1∥2

=R(wt−1) + ⟨gt−1,wt −wt−1⟩+
Ls

2
∥wt −wt−1∥2 + ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

130

=R(wt−1) +
1

2η

[
∥wt − (wt−1 − ηgt−1)∥2 − η2∥gt−1∥2 − ∥wt −wt−1∥2

]
+

Ls

2
∥wt −wt−1∥2

+ ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

=R(wt−1) +
1

2η
∥wt − (wt−1 − ηgt−1)∥2 −

η

2
∥gt−1∥2 +

[
Ls − 1

η

2

]
∥wt −wt−1∥2

+ ⟨[∇R(wt−1)− gt−1]F ,wt −wt−1⟩
(a)

≤R(wt−1) +
1

2η

[
∥w̄ − (wt−1 − ηgt−1)∥2 − ∥wt − w̄∥2 +

√
β∥vt − w̄∥2

]
− η

2
∥gt−1∥2

+

[
Ls − 1

η

2

]
∥wt −wt−1∥2 + ⟨[∇R(wt−1)− gt−1]F ,wt −wt−1⟩

=R(wt−1) +
1

2η

[
∥w̄ −wt−1∥2 + η2∥gt−1∥2 − 2⟨ηgt−1,wt−1 − w̄⟩

]
− 1

2η
∥wt − w̄∥2 +

√
β

2η
∥vt − w̄∥2

− η

2
∥gt−1∥2 +

[
Ls − 1

η

2

]
∥wt −wt−1∥2 + ⟨[∇R(wt−1)− gt−1]F ,wt −wt−1⟩

=R(wt−1) +
1

2η

[
∥w̄ −wt−1∥2 − 2⟨ηgt−1,wt−1 − w̄⟩

]
− 1

2η
∥wt − w̄∥2 +

√
β

2η
∥vt − w̄∥2

+

[
Ls − 1

η

2

]
∥wt −wt−1∥2 + ⟨[∇R(wt−1)− gt−1]F ,wt −wt−1⟩

(b)
=R(wt−1) +

1

2η
∥w̄ −wt−1∥2 − ⟨gt−1,wt−1 − w̄⟩ − 1

2η
∥wt − w̄∥2 +

√
β

2η
∥vt − w̄∥2

+

[
Ls − 1

η
+ C

2

]
∥wt −wt−1∥2 +

1

2C
∥[∇R(wt−1)− gt−1]F∥2

=R(wt−1) +
1

2η
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩+ ⟨∇R(wt−1)− gt−1,wt−1 − w̄⟩

− 1

2η
∥wt − w̄∥2 +

√
β

2η
∥vt − w̄∥2 +

[
Ls′ − 1

η
+ C

2

]
∥wt −wt−1∥2

+
1

2C
∥[∇R(wt−1)− gt−1]F∥2, (3.142)

where (a) follows from Lemma 11 and (b) follows from the inequality ⟨a, b⟩ ≤ C
2
a2 + 1

2C
b2,

for any (a, b) ∈ (Rd)2 with C > 0 an arbitrary strictly positive constant.

Let us now assume that η := 1
Ls′+C

: therefore the term
[
Ls′−

1
η
+C

2

]
∥wt −wt−1∥2 above

is 0. We now take the conditional expectation (conditioned on wt−1, which is the random
variable which realizations are wt−1), on both sides, and from Lemma 16 we obtain the
inequality below (we slightly abuse notations and denote E[·|wt−1 = wt−1] by E[·|wt−1]):

131

E[R(wt)|wt−1]

≤R(wt−1) +
1

2η
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+ ⟨[∇R(wt−1)− E [gt−1|wt−1]]F ,wt−1 − w̄⟩

+ E
[

1

2C
∥[∇R(wt−1)− gt−1]F∥2|wt−1

]
(a)

≤R(wt−1) +
1

2η
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+

G

2
∥[∇R(wt−1)− E[gt−1|wt−1]]F∥2 +

1

2G
∥wt−1 − w̄∥2

+
1

2C
E
[
∥∇R(wt−1)− gt−1∥2|wt−1

]
=R(wt−1) +

[
1

2η
+

1

2G

]
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
(3.143)

+
G

2
∥[∇R(wt−1)− E[gt−1|wt−1]]F∥2

+
1

2C
E
[
∥[∇R(wt−1)− gt−1]F∥2|wt−1

]
(b)

≤R(wt−1) +

[
1

2η
+

1

2G

]
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+

G

2
∥[∇R(wt−1)− E[gt−1|wt−1]]F∥2

+
1

2C

(
2∥[∇R(wt−1)− E[gt−1|wt−1]]F∥2 + 2∥[gt−1 − E[gt−1|wt−1]]F∥2

)
(3.97)+(3.99)

≤ R(wt−1) +

[
1

2η
+

1

2G

]
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+

G

2
C3

+
1

2C

(
2C3 + 2C1∥∇R(wt−1)∥2 + 2C2µ

2
)

(c)

≤R(wt−1) +

[
1

2η
+

1

2G

]
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

132

− 1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+

G

2
C3

+
1

2C

(
2C1

(
2∥∇R(wt−1)−∇R(w̄)∥2 + 2∥∇R(w̄)∥2

)
+ 2C2µ

2 + 2C3

)
(d)

≤R(wt−1) +

[
1

2η
+

1

2G

]
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+

G

2
C3

+
1

2C

(
2C1

(
2L2

s′∥wt−1 − w̄∥2 + 2∥∇R(w̄)∥2
)
+ 2C2µ

2 + 2C3

)
=R(wt−1) +

[
1

2η
+

1

2G
+

2C1L
2
s′

C

]
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+

G

2
C3

+
1

C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

)
(3.144)

(e)

≤R(wt−1) +

[
1

2η
+

1

2G
+

2C1L
2
s′

C

]
∥w̄ −wt−1∥2

+
[
R(w̄)−R(wt−1)−

νs
2
∥wt−1 − w̄∥2

]
− 1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+

G

2
C3

+
1

C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

)
(3.145)

=R(w̄) +

[
1
η
− νs

2
+

1

2G
+

2C1L
2
s′

C

]
∥w̄ −wt−1∥2

− 1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+

G

2
C3

+
1

C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

)
(f)

≤R(w̄) +

[
1
η
− νs

2
+

1

2G
+

2εFL
2
s′

τC

]
∥w̄ −wt−1∥2

− 1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+

G

2
C3

+
1

C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

)
(3.146)

Where (a) follows from the inequality ⟨a, b⟩ ≤ G
2
a2 + 1

2G
b2, for any (a, b) ∈ (Rd)2

with G > 0 an arbitrary strictly positive constant, (b) and (c) follow from the inequality
∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2 for any (a, b) ∈ (Rd)2, (d) follows from the fact that R is (Ls′ , s

′)-
RSS’ (Assumption 11 with sparsity level s′), therefore it is also (Ls′ , s)-RSS’, (e) follows
from the RSC condition, and for (f), we recall that C1 =

εF
qt

, and we define qt =
⌈

τ
ωt

⌉
, for

133

some ω > 1 and τ > 0 that will be chosen later in the proof.

Recall that we have chosen η := 1
Ls′+C

. Let us define α := C
Ls′

+1. Then C = (α− 1)Ls′ ,
and η = 1

αLs′
. Also recall that κs =

Ls′
νs

.

We will now choose the constant G and C, in order to simplify the inequality above,
such that it matches as much as possible the structure of the previous proofs:

We will seek to rewrite:[
1
η
−νs

2
+ 1

2G
+

2
εF
τ

L2
s′

C

](
= 1

2η

[
1 + 1

GαLs′
+

4L2
s′

εF
τ

(α−1)αL2
s′
− 1

ακs

])
, into :

1
2η

[
1− 1

α′κs

]
for some α′ > 0 (we will seek α′ ∝ α, with a dimensionless proportionality

constant for simplicity).

Therefore, let us choose G := 4
νs

, which implies:

1

GαLs′
=

1

4ακs

. (3.147)

And let us choose τ := 16κsεF
(α−1)

, which implies:

4L2
s′

εF
τ

(α− 1)αL2
s′
=

1

4ακs

. (3.148)

Therefore, using equations 3.147 and 3.148, we obtain:

[
1
η
− νs

2
+

1

2G
+

2 εF
τ
L2
s′

C

]
=

1

2η

[
1 +

1

GαLs′
+

4L2
s′

εF
τ

(α− 1)αL2
s′
− 1

ακs

]
=

1

2η

[
1 +

1

4ακs

+
1

4ακs

− 1

ακs

]
=

1

2η

[
1− 1

2ακs

]
=

1

2η

[
1− 1

α′κs

]
, (3.149)

where for simplicity we denote α′ = 2α.

We can therefore simplify (3.146) into:

E[R(wt)|wt−1]−R(w̄) ≤ 1

2η

[(
1− 1

α′κs

)
∥w̄ −wt−1∥2 −

1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+2η

(
G

2
C3 +

1

C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

))]
. (3.150)

134

We now take the expectation over wt−1 of the above inequality (i.e. we take Ewt−1 [·]): using
the law of total expectation (E[·] = Ewt−1 [E[·|wt−1]]) we obtain:

ER(wt)−R(w̄) ≤ 1

2η

[(
1− 1

α′κs

)
E∥w̄ −wt−1∥2 −

1

2η
E
[
∥wt − w̄∥2

]
(3.151)

+

√
β

2η
E
[
∥vt − w̄∥2

]
+2η

(
G

2
C3 +

1

C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

))]
. (3.152)

Let us call A := 2η
(
G
2
C3 +

1
C
(2C1∥∇R(w̄)∥2 + C2µ

2 + C3)
)

for simplicity.

This gives:

ER(wt)−R(w̄) ≤ 1

2η

[(
1− 1

α′κs

)
E∥w̄ −wt−1∥2 −

1

2η
E∥wt − w̄∥2

+

√
β

2η
E∥vt − w̄∥2 + A

]
. (3.153)

Additionally, in view of equation 3.125 applied at vt instead of wt, (since vt here
corresponds to the wt from Section 3.7.2.2, i.e. vt is the hard-thresholding of an iterate
after a gradient step), we know that:

ER(vt)−R(w̄) ≤ 1

2η

[(
1− 1

α′κs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2 + A

]
.

(3.154)

We now take a convex combination similarly as in the case without additional constraint
(section 3.5.2), for some ρ ∈ (0, 1).

E(1− ρ)R(wt) + ρR(vt)

≤R(w̄) +
1

2η

[(
1− 1

α′κs

)
E∥w̄ −wt−1∥2 − (1− ρ)E∥wt − w̄∥2

+
(
(1− ρ)

√
β − (1−

√
β)ρ
)
E∥vt − w̄∥2 + A

]
=R(w̄) +

1

2η

[(
1− 1

α′κs

)
E∥w̄ −wt−1∥2 − (1− ρ)E∥wt − w̄∥2

−
(
ρ−

√
β
)
E∥vt − w̄∥2 + A

]
(b)

≤R(w̄) +
1

2η

[(
1− 1

α′κs

)
E∥w̄ −wt−1∥2 − (1− ρ)E∥wt − w̄∥2

−
(
ρ−

√
β
)
E∥wt − w̄∥2 + A

]
=R(w̄) +

1

2η

[(
1− 1

α′κs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2 + A

]
. (3.155)

135

where in (b), we have assumed that
√
β ≤ ρ (later we will verify that our choice of k ensures

such a condition), and have used the fact that projection onto a convex set is non-expansive
(which implies that ∥vt − w̄∥2 ≥ ∥wt − w̄∥2).

Similarly as in [90], we now take a weighted sum over t = 1, ..., T , to obtain:

T∑
t=1

2η

(
1− 1

α′κs

1−√β

)T−t

E[(1− ρ)R(wt) + ρR(vt)−R(w̄)]

≤
T∑
t=1

(
1− 1

α′κs

1−√β

)T−t [(
1− 1

α′κs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2 + A

]

=
T∑
t=1

(
1− 1

α′κs

1−√β

)T−t [(
1− 1

α′κs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2

]

+
T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

A

=(1−
√

β)
T∑
t=1

(1− 1
α′κs

1−√β

)T−t+1

E∥w̄ −wt−1∥2 −
(
1− 1

α′κs

1−√β

)T−t

E∥wt − w̄∥2

+
T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

A

(a)
=(1−

√
β)

(1− 1
α′κs

1−√β

)T

∥w̄ −w0∥2 − E∥wT − w̄∥2
+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

A

≤(1−
√
β)

(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2 +
T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

A

≤
(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2 +
T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

A

=

(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2 +
T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2η

(
G

2
C3 +

1

C

(
2C1∥∇R(w̄)∥2

+C2µ
2 + C3

))
=

(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2 +
T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2η

(
G

2
C3 +

1

C

(
2
εF
qt
∥∇R(w̄)∥2

+
εabsµ

2

qt
+ C3

))
=

(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2 +
T∑
t=1

(
1− 1

α′κs

1−√β

)T−t
2η

qt

(
2εF∥∇R(w̄)∥2 + εabsµ

2

C

)

136

+
T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηC3

(
G

2
+

1

C

)

=

(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2 +
T∑
t=1

(
1− 1

α′κs

1−√β

)T−t
2η

qt

(
2εF∥∇R(w̄)∥2

C

)

+
T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηµ2

(
εµ

(
G

2
+

1

C

)
+

εabs
Cqt

)

≤
(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2 +
T∑
t=1

(
1− 1

α′κs

1−√β

)T−t
2η

qt

(
2εF∥∇R(w̄)∥2

C

)

+
T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηµ2

(
εµ

(
G

2
+

1

C

)
+

εabs
C

)
, (3.156)

where (a) follows from simplifying the telescopic sum. Let us denote for simplicity ζ :=
2η(2εF ∥∇R(w̄)∥2)

C
= 4ηεF ∥∇R(w̄)∥2

C
and Z := εµ

(
G
2
+ 1

C

)
+ εabs

C
.

We now choose k and st as follows: we choose k ≥ 4α′2

ρ
κ2
sk̄, which implies that:√

β ≤ 1

2α′

ρ
κs

=⇒
√

β ≤ 1

2α′

ρ
κs − 1

=⇒ 1−
√
β ≥ 1− 1

2α′

ρ
κs − 1

=
2α′

ρ
κs − 2

2α′

ρ
κs − 1

=

1− 1
α′
ρ
κs

1− 1

2α′
ρ
κs

=⇒

1− 1
α′
ρ
κs

1−√β

 ≤ 1− 1

2α′

ρ
κs

. (3.157)

We recall that we previously defined qt =
⌈

τ
ωt

⌉
, with τ = 16κs

εF
(α−1)

. We now set the value
of ω, to ω := 1− 1

α′
ρ
κs

.

Let us call ν := 1− 1

2α′
ρ
κs

. Note that we have:

ν ≤ ω. (3.158)

And that we have the inequality below:

ν

ω
=

1− 1

2α′
ρ
κs

1− 1

4α′
ρ
κs

=
4α′

ρ
κs − 2

4α′

ρ
κs − 1

= 1− 1

4α′

ρ
κs − 1

≤ 1− 1

4α′

ρ
κs

= ω. (3.159)

This allows us to simplify equation 3.156 into:

137

E
T∑
t=1

2η

(
1− 1

α′κs

1−√β

)T−t

[(1− ρ)R(wt) + ρR(vt)−R(w̄)]

≤ νT∥w̄ −w0∥2 +
T∑
t=1

νT−tωt−1 +
ζ

τ

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

= νT∥w̄ −w0∥2 +
ωT

ω

T∑
t=1

(ν
ω

)T−t

+
ζ

τ

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

= νT∥w̄ −w0∥2 +
ωT

ω

1−
(
ν
ω

)T
1−

(
ν
ω

) +
ζ

τ

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

≤ νT∥w̄ −w0∥2 +
ωT

ω

1

1−
(
ν
ω

) + ζ

τ

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

(a)

≤ νT∥w̄ −w0∥2 +
ωT

ω

1

1− ω
+

ζ

τ

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

(b)

≤ νT∥w̄ −w0∥2 +
4

3
ωT 1

1− ω
+

ζ

τ

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

(c)

≤ ωT∥w̄ −w0∥2 +
4

3
ωT 1

1− ω
+

ζ

τ

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

(d)

≤ ωT

1− ω
∥w̄ −w0∥2 +

4

3
ωT 1

1− ω
+

ζ

τ

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

=
ωT

1− ω

(
∥w̄ −w0∥2 +

4

3

)
+

ζ

τ

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

= 4
α′

ρ
κsω

T

(
∥w̄ −w0∥2 +

4

3

)
+

ζ

τ

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2, (3.160)

where in the left hand side we have used the linearity of expectation, and where (a) uses
equation 3.159, (b) uses the fact that 1

ω
= 1

1− 1

4α′
ρ κs

≤ 1
1− 1

4

= 4
3

(since κs ≥ 1 and α′ ≥ 1

(indeed, we have α′ = 2α = 2(C
Ls′

+ 1) with C > 0), so consequently α′

ρ
≥ 1), (c) uses

equation 3.158, and (d) uses the fact that ω < 1 so 1 < 1
1−ω

.

Let us now normalize the above inequality:

138

E

∑T
t=1 2η

(
1− 1

α′κs
1−

√
β

)T−t

[(1− ρ)R(wt) + ρR(vt)]

∑T
t=1 2η

(
1− 1

α′κs
1−

√
β

)T−t
≤ R(w̄)+

4α′

ρ
κsω

T
(
∥w̄ −w0∥2 + 4

3
ζ
τ

)
∑T

t=1 2η

(
1− 1

α′κs
1−

√
β

)T−t
+Zµ2.

(3.161)

The left hand side above is a weighted sum, which is an upper bound on the smallest
term of the sum.

Regarding the right hand side, we can simplify it using the fact that 0 <

(
1− 1

α′κs
1−

√
β

)
,

and therefore:
T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

≥ 1. (3.162)

Therefore, we obtain:

E min
t∈{1,..,T}

[(1− ρ)R(wt) + ρR(vt)−R(w̄)] ≤
4α′

ρ
κsω

T
(
∥w̄ −w0∥2 + 4

3
ζ
τ

)
2η

+ Zµ2

= 4
α2

ρ
Ls′κsω

T

(
∥w̄ −w0∥2 +

4

3

ζ

τ

)
+ Zµ2,

(3.163)

which can be simplified into the expression below, using the definition of ŵT :

E[min
t∈[T]

(1− ρ)R(wt) + ρR(vt)−R(w̄)] ≤ 4
α2

ρ
Ls′κsω

T

(
∥w̄ −w0∥2 +

4

3

ζ

τ

)
+ Zµ2.

(3.164)

To simplify the above result, we recall the assumptions made earlier on: we have chosen

τ = 16κsεF
(α−1)

, and G = 4
νs

.

Therefore, to sum up, we have:

Z = εµ

(
G

2
+

1

C

)
+

εabs
C

= εµ

(
2

νs
+

1

C

)
+

εabs
C

(3.165)

ω = 1− 1

4α′

ρ
κs

= 1− 1

8α
ρ
κs

(3.166)

ζ =
4ηεF∥∇R(w̄)∥2

C
(3.167)

139

The last inequality implies: ζ
τ
=

4ηεF ∥∇R(w̄)∥2
C

16κsLs′
εF
C

= η∥∇R(w̄)∥2
4κsLs′

.

Let us denote by εT the right-hand side term from equation 3.164:

εT = 4
α2

ρ
Ls′κsω

T

(
∥w̄ −w0∥2 +

4

3

η∥∇R(w̄)∥2
4κsLs′

)
+ Zµ2. (3.168)

We now proceed similarly as in the proof of Theorem 7 above. Recall that we have
assumed in the Assumptions of Theorem 9, without loss of generality, that R is non-negative,
which implies that R (vt) ≥ 0. Plugging this in equation 3.164 implies that:

Emin
t∈[T]

R (wt) ≤
1

1− ρ
R(w̄)+

εT
1− ρ

+
Z

(1− ρ)
µ2 ≤ (1+2ρ)R(w̄)+

εT
1− ρ

+
Z

1− ρ
µ2. (3.169)

Plugging the change of variable ε′T = εT
1−ρ

into equation 3.169 above, and redefining Z into

Z := 1
1−ρ

(
εµ

(
2
νs

+ 1
C

)
+ εabs

C

)
, we obtain that:

Emin
t∈[T]

R (wt) ≤ (1 + 2ρ)R(w̄) + ε′T + Zµ2. (3.170)

Further, consider an ideal case where w̄ is a global minimizer of R over B0(k) :=
{w : ∥w∥0 ≤ k}. Then R (vt) ≥ R(w̄) is always true for all t ≥ 1. It follows that
the bound in equation 3.164 yields:

Emin
t∈[T]
{(1− ρ)R (wt) + ρR(w̄)} ≤ Emin

t∈[T]
{(1− ρ)R (wt) + ρR (vt)} ≤ R(w̄) + εT ,

which implies: Emint∈[T]R (wt) ≤ R(w̄) + εT
1−ρ

. In this case, we can simply set ρ = 0.5,
and define ε′T = εT

1−ρ
= 2εT similarly as above. The proof is completed.

3.7.5 Proof of Corollary 4

Proof of Corollary 4. Let ε ∈ R∗
+. Let us find T to ensure that Emint∈{1,..,T}(1−ρ)R(wt)+

ρR(vt)−R(w̄) ≤ ε+ Zµ2

This will be enforced if:

4α2 1

ρ
Ls′κsω

T

(
∥w̄ −w0∥2 +

4

3

η∥∇R(w̄)∥2
4κsLs′

)
≤ ε

⇐⇒ T log(ω) ≤ log

 ε

4α2 1
ρ
Ls′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)

⇐⇒ T ≥ 1

log(1
ω
)
log

4α2 1
ρ
Ls′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

 . (3.171)

140

Therefore, let us take:

T :=

 1

log(1
ω
)
log

4α2 1
ρ
Ls′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

 . (3.172)

We can now derive the #IZO and #HT. First, we have one hard-thresholding operation
at each iteration, therefore #HT= T . Using the fact that 1

log(1
ω
)
= 1

− log(ω)
= 1

− log(1− 1

8α 1
ρκs

)
≤

1
1

8α 1
ρκs

= 8α 1
ρ
κs (since by property of the logarithm, for all x ∈ (−∞,−1) : log(1− x) ≤ −x

), and the fact that α = C
Ls′

is independent of κs, we obtain that #HT = O(κs log
(
1
ε

)
).

We now turn to computing the #IZO. At each iteration t we have qt function evaluations,
therefore:

#IZO =
T−1∑
t=0

qt

≤
T−1∑
t=0

(τ

ωt
+ 1
)

= T + τ

(
1
ω

)T − 1
1
ω
− 1

≤ T +
τ

1
ω
− 1

(
1

ω

)T

= T +
τ

1
ω
− 1

exp

(
T log

(
1

ω

))
(a)

≤ 1 +
1

log(1
ω
)
log

4α2 1
ρ
Ls′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

+

τ
1
ω
− 1

exp

log

(
1

ω

) 1

log(1
ω
)
log

4α2 1
ρ
Ls′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

+1])

= 1 +
1

log(1
ω
)
log

4α2 1
ρ
Ls′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

+

τ
ω

1
ω
− 1

4α2 1
ρ
Ls′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

= 1 +
1

log(1
ω
)
log

4α2 1
ρ
Ls′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

141

+
τ

1− ω

4α2 1
ρ
Ls′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

= 1 +
1

log(1
ω
)
log

4α2 1
ρ
Ls′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

+ τ

32α3 1
ρ2
Ls′κ

2
s

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

, (3.173)

where (a) follows from equation 3.172.

And we recall that τ = 16κs
εF

(α−1)
, which implies that:

τ
32α3 1

ρ2
Ls′κ

2
s

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2
2γκsLs′

)
ε

= O
(
εF
ε

(
κ3
sLs′ +

κs

νs

))
.

Therefore, overall, the IZO (query complexity) is in O
(
εF
ε
κ3
sLs′

)
. The proof is completed.

3.8 Experiments

In this section, we provide some experiments to validate experimentally our theoretical
results. Before describing our experiments, we provide a short discussion about the settings
and algorithms that we will illustrate. For constraints Γ for which the Euclidean projection
onto B0(k)∩Γ has a closed form equal to the TSP, our algorithm is identical to a vanilla non-
convex projected gradient descent baseline (see Remark 11). In such case, our contribution in
this paper is on the theoretical side, by providing some global guarantees on the optimization,
instead of the local guarantees from existing work (cf. Table 1). Additionally, there are
case in which there exists a closed form for projection onto Γ ∩ B0(k), different from the
TSP (e.g. when Γ = Rd

+, cf. [97]). Although our framework allows us to get approximate
global convergence results when using the TSP, still, at the iteration level, a gradient step
followed by Euclidean projection (not TSP) is optimal, since it minimizes a constrained
quadratic upper bound on R. Therefore, we may not expect much improvement of the TSP
over the Euclidean projection in such case, except on the computational side. With this in
mind, we provide below the outline of our experiments:

• In Section 3.8.1, we illustrate on a synthetic example the trade-off between sparsity
and optimality that is introduced by the extra constraint Γ, and that is balanced by
the parameter ρ.

• In Section 3.8.2, we consider a synthetic example, in a case where Euclidean Projection
and Two Steps Projection do not coincide (as mentioned above), in order to compare
those two methods.

142

• In Section 3.8.3, we consider a portfolio index tracking problem where the goal is to
illustrate a real-life application of our methods.

• In section 3.8.4, we consider a multi-class logistic regression on a real life dataset, to
illustrate in more details in particular the stochastic and the zeroth-order versions of
our method.

3.8.1 Synthetic Experiments: Illustrating the Sparsity/Optimality
Trade-Off

In the section below, we provide a synthetic experiment to illustrate our Theorem 4, i.e.
the trade-off between sparsity and optimality that is introduced by the extra constraint Γ,
and that is balanced by ρ ∈ (0, 0.5]. We consider the synthetic linear regression example
from [6] (Section E), with the risk below:

R(w) :=
1

n
∥Xw − y∥22 , (3.174)

and where X is diagonal with:

Xii =

1 if i ∈ I1√
κ if i ∈ I2

1 if i ∈ I3 ,

(3.175)

where I1 = [s], I2 = [s+ 1, s(κ+ 1)], I3 = [s(κ+ 1) + 1, s(κ2 + κ+ 1)] for some s ≥ 1 and
κ ≥ 1 (we choose s = 50 and κ = 2, which results in having d = 350), n denotes the number
of rows of X, and y is defined as

yi =

κ
√
1− 4δ if i ∈ I1√

κ
√
1− 2δ if i ∈ I2

1 if i ∈ I3

(3.176)

for some small δ > 0 used for tie-breaking (we set it to 1e− 4). We chose such an example
as it is used by [6] to prove a lower bound on the fundamental trade-off between sparsity
and optimality proper to IHT: they use it to show that the relaxation of the sparsity k, of
the order k = Ω(κ2k̄) (see also Table 3.1) is in fact unavoidable for IHT-type algorithms.

Case without Extra Constraints. First, we illustrate our Theorem 3 which considers
vanilla IHT, without extra constraints. In Figure 3.2, on the one hand, we plot in blue,
for every k ∈ [d], the value of R(ŵk) where ŵk is the result of running vanilla IHT with
sparsity k up to convergence. Then, on the other hand, we go through every value of k̄ ∈ [d],
and for each of them, we plot a point (K(k̄), R(w̄k̄)), where K(k̄) denotes the value of k
required in our Theorem 3, i.e.: K(k̄) := 4κ2k̄, and w̄k̄ := minw∈Rd:∥w∥0≤k̄ R(w). Therefore,
each of such point R(w̄k̄) constitutes an upper bound on the value of R(ŵK(k̄)), as we can
indeed observe on Figure 3.2.

143

Figure 3.2: Illustration of Theorem 3 (i.e. Γ = Rd).

Case with Extra Constraints. We now illustrate the influence of the extra constraint
Γ on the problem. We consider for Γ an ℓ∞ norm constraint of radius λ > 0, that is:
Γ = {w ∈ Rd : ∀i ∈ [d], |wi| ≤ λ}. In this new setting, we also go through every value of
k̄ ∈ [d], but this time, each of those values actually defines a curve parameterized by ρ,
according to our Theorem 4: for each k̄ we plot the parametric curve (K(k̄, ρ), (1+2ρ)R(w̄k̄)),
where, similarly as above, K(k̄, ρ) denotes the required value of k according to Theorem 4
(i.e., K(k̄, ρ) = 4(1−ρ)2k̄κ2

ρ2
), and w̄k̄ := minw∈Rd:∥w∥0≤k̄ R(w), and where ρ ranges in (0, 0.5].

We present the results for several values of λ in Figure 3.3 below. Note that a priori,
the curves are allowed to cross, i.e. for a given k on the x-axis, one could have a point
from a curve of small k̄ (i.e. lighter shade of red) which could potentially also belong to a
curve of larger k̄ (let us denote it k̄′) (darker shade of red), which would necessarily have a
larger ρ (let us denote it ρ′), but for which the overall (1 + 2ρ′)R(w̄k̄′) could be equal to
(1 + 2ρ)R(w̄k̄) (since the problem will be less constrained with k̄′ than with k). However,
interestingly, this is not the case here due to the simplicity of the structure of the example.
We can also observe that similarly as in the case where Γ = Rd, the bound is a bit tighter
in the small k regime (i.e. when k ∈ [50, 100]).

3.8.2 Synthetic Experiment: Comparing Two-Step Projection and
Euclidean Projection

3.8.2.1 Differences Between Two-Step Projection and Euclidean Projection

In this section, we describe the differences between the two-step projection and the Euclidean
projection onto the mixed constraints Γ ∩ B0(k). One can encounter several possible cases:

• Case (i): the two-step projection (TSP) and the Euclidean projection onto Γ∩B0(k)
are identical (see e.g. Remark 11): in that case, the contribution of our paper are on
the theoretical side: Theorems 4, 7, and 9 give global convergence guarantee which
therefore in this case apply to the usual (non-convex) projected gradient descent
algorithm with Euclidean projection.

144

(a): λ = 0.1 (b): λ = 0.5

(c): λ = 1 (d): λ = 2

Figure 3.3: Illustration of Theorem 3 (with Γ an ℓ∞ ball of radius λ).

• Case (ii): the TSP and the Euclidean projection onto the mixed constraints are
different: this case can be declined into several sub-cases as described below:

– Case (a): the Euclidean projection onto the mixed constraint Γ ∩ B0(k) is
unknown (such as for the constraints Γ used in the experiments from Section
3.8): in that case, the TSP can allow to fill such gap, since the TSP only requires
the knowledge of the projection onto Γ, which is often known and easy to do.

– Case (b): the Euclidean projection onto the mixed constraint Γ∩B0(k) is known,
but computationally expensive: in that case, the TSP can provide a simpler
and faster alternative to the Euclidean projection, while still enjoying some
convergence guarantees as shown in this paper.

– Case (c): the Euclidean projection onto the mixed constraint Γ∩B0(k) is known
and is efficient enough (e.g. when Γ belongs to the set of positive symmetric sets

145

such as in [97]). In such cases, it is unclear whether the TSP can improve upon
Euclidean projection since, at the iteration level, using the Euclidean projection
is optimal (indeed, a (Euclidean) projected gradient descent step minimizes a
quadratic upper bound on the objective value under constraints (derived from
the smoothness of R)), and the TSP is therefore suboptimal in that sense (at the
iteration level). This is the case that we will analyze in this section, in order to
evaluate in practice the extend of such differences between TSP and Euclidean
projection in such case.

3.8.2.2 Setting

As mentioned above, we analyze in more details the case (ii,c) above. We consider a simple
synthetic linear regression setting with a correlated design matrix, i.e. where the design
matrix X is formed by n i.i.d. samples from d (we take d = 1000 , and n = 5000) correlated
Gaussian random variables {X1, .., Xd} of zero mean and unit variance, such that:

∀i ∈ {1, . . . , d} : E[Xi] = 0,E[X2
i] = 1; (3.177)

∀(i, j) ∈ {1, . . . , d}2, i ̸= j : E[XiXj] = ρ|i−j|. (3.178)

More precisely, we generate each feature Xi in an auto-regressive manner, from previous
features, using a correlation ρ ∈ [0, 1), in the following way: we have X1 ∼ N (0, 1) and
σ2 = 1− ρ2, and for all j ∈ {2, ..., d}: Xj+1 = ρXj + ϵj where ϵj = σ∆, with ∆ ∼ N (0, 1).
Additionally, the data is generated from a vector w∗ of k∗-sparse support sampled uniformly
at random, with k∗ = 20, and with each non-zero entry sampled from a normal distribution,
and y is obtained with a noise vector ϵ created from i.i.d. samples from a normal distribution,
rescaled to enforce a given signal to noise ratio (SNR), as follows:

y = Xw∗ + ϵ (3.179)

with the signal to noise ratio defined as snr = ∥Xw∗∥
∥ϵ∥ (we choose snr = 3). We generate this

dataset using the make_correlated_data function from the benchopt package [106]. The
problem that we solve is:

min
w∈Γ∩Rd

1

n
∥Xw − y∥2 (3.180)

In such case, the Euclidean projection of w ∈ Rd onto Γ ∩ B0(k) is given in [97], [14], and
consists in simply sorting the entries in w, (w1, ..., wd) (not in absolute value), keeping the
k largest ones (and setting the others to 0) to obtain w′ and then replacing each coordinate
w′

i by max(0, w′
i). The two-step projection (TSP) in such case is simply hard-thresholding

of w to obtain a vector w′ followed by replacing each coordinate w′
i by max(0, w′

i)).

We plot the optimization curves for several values of k (k ∈ {30, 100, 200, 500, 800, 1000}
in Figure 3.4). In all curves, the learning rate is set to 1/L where L is the smoothness
constant, equal to 2

n
∥X∥2s where ∥X∥s is the spectral norm of X.

146

(a): k = 30 (b): k = 100

(c): k = 200 (d): k = 500

(e): k = 800 (f): k = 1000

Figure 3.4: Comparison of TSP vs. Euclidean projection for several k.

147

3.8.2.3 Discussion

As we can observe in Figure 3.4, the Euclidean projection onto Γ ∩ B0(k) performs better
in terms of objective value than the TSP in some cases. However, the gap between the
two methods closes as the enforced sparsity of the iterates k increases. We interpret it in
the following way. First, (non-convex) projected gradient descent (i.e. using Euclidean
projection) is guaranteed to converge to a (non-convex constraints version of a) stationary
point of the objective function (see e.g. Theorem 1 from [152]), whereas our method does
not possess such guarantee (indeed, our guarantees are of the global kind: we give upper
bounds on the objective value for the output of the algorithm), and therefore, the TSP
may in some cases not converge to a stationary point, which may explain why Euclidean
projection sometimes performs better than TSP. However, for larger k, in both cases the
projections operators (TSP or Euclidean projection) become closer to a simple projection
onto Γ (i.e. without sparsity constraints), which explains why as k grows, the gap between
the two methods reduces. Finally, the improved performance of the TSP when k is larger is
consistent with our Theorem 4, since for larger k, the upper bound on R from Theorem 4
can be made smaller, since considering larger k implies that ρ can be taken smaller as per
Remark 13, reducing our upper bound on the objective value.

In conclusion, these results show that in case (ii) from Section 3.8.2.1 above, the TSP
introduced in this paper can be the most useful if the Euclidean projection onto Γ∩B0(k) is
unknown, or too expensive computationally. Additionally, the gap between the two methods
reduces if the enforced sparsity k of the iterates is large enough, or if the constraint forces
iterates to stay close to 0.

3.8.3 Real Data Experiment: Portfolio Index Tracking

We now consider the following index tracking problem, originally presented in [138], and
used as well in [14,97]. It is also similar to the portfolio optimization problem presented
in [84]. We seek to reproduce the performance of an index fund (such as S&P500), by
investing only in a few key k assets, in order to limit transaction costs. The general problem
can be formulated as a linear regression problem:

min
w∈B0(k)∩Γ

∥Aw − y∥2 (3.181)

where w represents the amount invested in each asset. For each i ∈ [n] denoting a timestep
, the i-th row of A denotes the returns of the d stocks at timestep i, and yi the return of the
index fund. In our scenario, we seek to limit to a value D > 0 the amount of transactions in
each of c activity sector (group) of the portfolio (e.g. Industrials, Healthcare, etc.), denoted
as Gi for i ∈ [c]. We ensure such constraint through an ℓ1 norm constraint on each group:
Γ = {w ∈ Rd : ∀i ∈ [c], ∥wGi

∥1 ≤ D}, where wGi
is the restriction of w to group Gi (i.e.

for j ∈ [d], wGij = wj if j ∈ Gi and 0 otherwise). In our case, y denotes the daily returns
of a given portfolio index (e.g. S&P500) for a given time period (e.g. a given year), and A
the returns of the corresponding d assets (over c sectors) of the index during such period.

148

Baselines. Up to our knowledge, there are no closed form for the Euclidean projection
onto B0(k) ∩ Γ, but the two-step projection can easily be done by projecting onto the
ℓ1 ball for each sector independently. We compare our algorithm (FG-HT-TSP) to two
naive baselines: (a) the first one. called "PGD(Γ) + finalΠB0", consists in only ensuring
the constraints in Γ, followed at the end of training by a simple hard-thresholding step
to keep the k largest components of w in absolute value, and (b) the second one, called
"PGD(B0) + finalΠΓ", consists in running vanilla IHT, followed at the end of training by
a simple projection onto Γ to keep w in Γ ∩ B0. We learn the weights of the portfolio on
80% of the considered period, and evaluate the out of sample (test set) performance on the
remaining 20% (shaded area in the figure).

Datasets. We compare our algorithms on three portfolio indices datasets:

• S&P500: We take k = 15 and D = 50. y denotes the daily returns from January 1,
2021, to December 31, 2022, and A denotes the returns of the corresponding d = 497
assets (over c = 11 sectors). We plot our results in Figure 3.4(a).

• HSI: We take k = 15 and D = 1000. y denotes the daily returns from January 1,
2021, to December 31, 2022, and A denotes the returns of the corresponding d = 72
assets (over c = 4 sectors). We plot our results in Figure 3.4(b).

• CSI300: We take k = 15 and D = 100. y denotes the daily returns from March 1,
2021 (due to missing values in early 2021), to December 31, 2022, and A denotes the
returns of the corresponding d = 291 assets (over c = 10 sectors). We plot our results
in Figure 3.4(c).

The data for those three indices is scrapped from the web using the beautifulsoup1 library
to gather information about the index, and the yfinance2 library to scrap the returns of
such stocks during the considered time period. We provide in Table 3.2 below the respective
dimensions of the train-sets used for the experiments (which constitutes, as we recall, 80%
of the total dataset).

INDEX n d
S&P500 402 497
CSI300 353 291
HSI 394 72

Table 3.2: Number of samples (n) and dimension (d) of the training sets for the index
tracking experiment.

1https://pypi.org/project/beautifulsoup4/
2https://github.com/ranaroussi/yfinance

149

https://pypi.org/project/beautifulsoup4/
https://github.com/ranaroussi/yfinance

Results. As we can observe on Figure 3.5, overall, the true index (blue curve) is more
successfully tracked by our method (FG-HT-TSP, green curve), on the train-set of S&P500
and CSI300 and on the test-set of HSI and CSI300. Additionally, we have observed that for
S&P500, our algorithm solution nonzero weights spans 9 of the 11 sectors for the S&P500
index, 7 sectors out of 10 for the CSI300 index, and 3 of the 4 sectors the one for the
HSI index. Therefore, such portfolios are well diversified, as successfully enforced by our
constraint.

(a): S&P500 (b): HSI

(c): CSI300

Figure 3.5: Index tracking with sector constraints for various indices

On the Verification of Assumptions 7 to 9: Note that such index tracking experiments
verify Assumptions 7, 8 and 9:

• Assumption 7 is verified since the cost function is quadratic, with a design matrix
of size n > d (except in the case of S&P500). As can be expected with such matrices

150

in general, the Hessian H = 2A⊤A is positive-definite (we have indeed verified in
our code that it is). Therefore the RSC constant is bounded below by λmin where
λmin is the smallest eigenvalue of 2A⊤A. Note that for S&P500, strong convexity is
not verified since d > n: however, since we take k = 15, with high probability (i.e.
unless we can find s = 2k = 30 columns of A that are exactly linearly dependent),
RSC should be verified.

• Assumption 8 and Assumption 11 are both verified since the cost function is
quadratic, therefore the (strong) RSS constant is bounded above by 2∥A∥2s, where
∥ · ∥s denotes the spectral norm.

• Assumption 9 is verified since projection onto Γ can be done group-wise, and for
each group the projection is onto an ℓ1 ball, which is a convex symmetric set (which
is support-preserving from Remark 10), therefore, overall, Γ is support-preserving).

3.8.4 Real Data Experiment: Multiclass Logistic Regression

We now consider the multiclass logistic regression problem with class group-wise ℓ2 norm

constraint as follows. We have Ri(w) =
∑c

j=1

[
λ
c
∥wj∥22 − 1 {yi = j} log exp(x⊤

i wj)∑c
l=1 exp(x⊤

i wl)

]
,

where yi is the target output of xi, c is the number of classes, and wj is the weight vector
specific to class j. In addition to the sparsity constraint B0(k), we enforce the following
additional constraint Γ = {w ∈ Rd : ∀j ∈ [c] : ∥wj∥2 ≤ D}, for some constant D ∈ R+,
where d = p × c, with p the number of features of the samples xi. More precisely, in
such multiclass logistic regression, we seek to ensure an extra regularization not only on
the whole global weight vector w (with the used squared ℓ2 penalty), but also on each
weight vector related to each class (through Γ), in order to prevent a potential class-wise
overfitting.

Up to our knowledge, there is no known closed form for the Euclidean projection onto
such Γ ∩ B0(k). However, the two-step projection (TSP) can be done easily: once the first
projection is done (projection onto B0(k), i.e. hard-thresholding) and the sparse support S
is identified as per Section 3.4.1, the projection onto Γ restricted to S can be easily done
since Γ is class-wise decomposable, and therefore it suffices to project, for each j ∈ [c], each
wj onto the ℓ2 ball of radius D.

We have the smoothness constant L as below (see [21] for a derivation):

L = σmax

(
1

2n

(
Ic×c −

1

c
1c1

⊤
c

)
⊗X⊤X + 2λId×d

)
(3.182)

Where ⊗ denotes the Kronecker product, σmax the largest singular value of a matrix,
Im×m the identity matrix of size m×m for some m, and 1c the vector [1, 1, .., 1]⊤ ∈ Rc .

We consider the dna dataset from the LibSVM dataset repository [35], and we choose
D = 0.5, λ = 10. For the stochastic case we take B = 1e5, and for the stochastic and ZO
case we take α = 2. Note that in the stochastic case, if the growing batch-size required

151

by Theorem 7 becomes larger than n, we keep it fixed to n (i.e. in such case we take the
whole dataset at each step). In the zeroth-order case, we take µ = 1e− 6. We set set all
other hyperparameters as per Theorems 4, 7 and 9. In Figures 3.6, 3.7, 3.8 and 3.9, we plot
the number of calls to a gradient ∇Ri (IFO: iterative first order oracle), and number of
hard-thresholding operations (NHT), for various values of k and D (for the zeroth-order
case, we plot the IZO (number of calls to the function R) instead of the IFO). We can
observe that HSG-HT-TSP allows a smaller IFO than FG-HT-TSP in early iterations, since
it does not need to compute a full gradient at each iteration.

In addition, to illustrate the theoretical improvement of our results on zeroth-order,
even in the case where there is no additional constraint, we compare in Figures 3.10, 3.11
and 3.12 our algorithm HZO-HT with ZOHT [46], choosing for both algorithm an initial
number of random direction as prescribed by our Theorem 9, and choosing, for the learning
rate, in our case the one prescribed by Theorem 9, and for ZOHT, the one prescribed by
Theorem 1 from [46] (and in both cases we fix s = 3k as per Theorem 9): we can see that,
in addition to being able to obtain a convergence in risk without system error, contrary to
ZOHT (cf. Table 3.1), our Theorem 9 also prescribes a better (larger) learning rate (i.e.
less conservative), leading to faster convergence.

(a): #IFO (b): #IZO (c): #NHT

Figure 3.6: Multiclass Logistic Regression with TSP, k = 50, D = 0.5

(a): #IFO (b): #IZO (c): #NHT

Figure 3.7: Multiclass Logistic Regression with TSP, k = 150, D = 0.5

152

(a): #IFO (b): #IZO (c): #NHT

Figure 3.8: Multiclass Logistic Regression with TSP, k = 50, D = 0.01

(a): #IFO (b): #IZO (c): #NHT

Figure 3.9: Multiclass Logistic Regression with TSP, k = 150, D = 0.01

(a): #IZO (b): #NHT

Figure 3.10: Multiclass Logistic Regression: HZO-HT
vs. ZOHT, k = 50

On the Verification of Assumptions 7 to 9: Note that such logistic regression
experiments verify Assumptions 7, 8, 11 and 9:

153

(a): #IZO (b): #NHT

Figure 3.11: Multiclass Logistic Regression: HZO-HT
vs. ZOHT, k = 100

(a): #IZO (b): #NHT

Figure 3.12: Multiclass Logistic Regression: HZO-HT
vs. ZOHT, k = 150

154

• Assumption 7 is verified thanks to the added squared ℓ2 regularization, which makes
the problem strongly convex and hence also restricted strongly convex.

• Assumption 8 and Assumption 11 are both verified since the problem is smooth
with a constant L as described above in equation 3.182, and therefore such constant
is also a valid (strong) restricted-smoothness constant.

• Assumption 9 is verified since, since, similarly as in the index tracking experiments
from Section 3.8.3, projection onto Γ can be done group-wise, and for each group the
projection is onto an ℓ1 ball, which is a convex sign-free set (which is support-preserving
from Remark 10), therefore, overall, Γ is support-preserving.

3.9 Conclusion

In this paper, we provided global convergence guarantees for variants of Iterative Hard
Thresholding which can handle extra convex constraints which are support-preserving, via
a two-step projection algorithm. We provided our analysis in the deterministic, stochastic,
and zeroth-order settings. To that end, we used a variant of the three-point lemma, adapted
to such mixed constraints, which allowed to simplified existing proofs for vanilla constraints
(and to provide a new kind of result in the ZO setting), as well as obtaining new proofs
in such combined constraints setting. Finally, it would also be interesting to extend this
work to a broader family of sparsity structures and constraints, for instance to matrices or
graphs. We leave this for future work.

155

Chapter 4

Iterative Regularization with k-Support
Norm.

4.1 Interlude: a Dual Perspective on Iterative Hard-
Thresholding

In this section, we transition to the last algorithm explored in this thesis, namely, Iterative
Regularization with k-support Norm (IRKSN). So far, we considered the IHT algorithm,
which is a (non-convex) projected gradient algorithm. For a set S for which a projection
operator is well defined, projected gradient descent is as follows, where ηt is the step-size at
iteration t, f is the function to optimize, and ΠS denotes the Euclidean projection onto S:

xt+1 = ΠS(xt − ηt∇f(xt)) (4.1)

In other words, at each iteration, we perform a gradient step, followed by a projection
step. However, in [111], an alternative method is proposed to solve constrained optimization
problems (although in the convex setting): the dual averaging method. It consists in
accumulating the gradients in an unprojected so-called dual variable, from which the
iterates xt are obtained by a projection onto the feasible set. The update rule of dual
averaging can be written as follows:

yt+1 = yt − ηt∇f(xt) (4.2)

xt+1 = ΠS(yt+1) (4.3)

Such an algorithm is also called (lazy) mirror descent [27] or lazy online Convex
Optimization [164]. To prove the convergence of such an algorithm, one usually needs to
consider the following potential function ϕ, such that we have ΠS = ∇ϕ. For instance,
if S is the ℓ2 unit ball B := {x ∈ Rd : ∥x∥ ≤ 1}, we have ΠS(·) = ∇ϕ(·), with, for any

x ∈ Rd : ϕ(x) =

{
1
2
∥x∥2 if ∥x∥2 ≤ 1

∥x∥2 − 1
2

otherwise
(one can show that ϕ is indeed smooth, as it is

156

Figure 4.1: The half-squared top-k norm is not smooth.

the multidimensional Huber loss function, which is the Moreau-Yosida smoothing of the
(unsquared) ℓ2 norm function (and hence it is smooth by property of the Moreau-Yosida
smoothing) (see Example 4.1 in [15])). Therefore, by analogy, we could consider as a
potential ϕ, the following half-squared top-k norm function ϕ(·) = 1

2
(∥ · ∥(k))2, where ∥ · ∥(k)

is defined as the ℓ2 norm of the largest k components of a vector. One can indeed check
that for the points where 1

2
(∥ · ∥(k)) is differentiable, ∇

[
1
2
(∥ · ∥(k))

]
= Hk(·): in other words,

such a function ϕ can indeed be a potential associated with projection onto the ℓ0 ball, i.e.
a potential associated with the hard-thresholding operator. Unfortunately however, such a
potential function ϕ is not smooth (as can be observed in Figure 4.1), and therefore one
cannot use the same proof than in the convex case to prove convergence of a dual averaging
version of the k-support norm. However, a potentially interesting idea is to replace the
potential by its Moreau smoothing, which amounts to adding an squared ℓ2 regularization
to the dual of the (half-squared) top-k norm. The dual of the half-squared top-k norm is the
half-squared k-support norm (see e.g. [24] Example 3.27, p. 94), where the k-support norm
is the dual norm of the top-k norm. We denote the k-support norm by ∥ · ∥spk (see e.g. [3])
and we will describe it in more details later in this chapter. The Moreau smoothing of the
top-k norm, can indeed be denoted by ϕδ, and expressed as follows, with ϕ∗ denoting the
Fenchel dual of a function ϕ [127], as using the fact that for some λ > 0, (λϕ(·))∗ = λϕ∗(·

λ
),

and Section 3.1 from [121]:

ϕδ(·) = (δ
1

2
(∥ ·
δ
∥spk)2 +

1

2
(∥ · ∥22))∗ (4.4)

Therefore, to sum up, without smoothing of ϕ, a dual averaging algorithm using the
potential ϕ directly would be as such (where we use the subgradient since the potential is
not smooth):

yt+1 = yt − ηt∇f(xt) (4.5)

xt+1 ∈ ∂ϕ(yt+1) (4.6)

But using the smoothed ϕδ instead of ϕ, we obtain the following algorithm:

157

yt+1 = yt − ηt∇f(xt) (4.7)
xt+1 = ∇ϕδ(yt+1) (4.8)

Since the gradient of the Moreau envelope of a function ϕ is equal to the proximal
operator of its Fenchel dual ϕ∗ (see the last equation in Section 3.1 [121]), we can rewrite
the above update steps into:

yt+1 = yt − ηt∇f(xt) (4.9)

xt+1 = prox 1
δ
ϕ∗(·)(

yt+1

δ
) (4.10)

This algorithm is sometimes known as Bregman iterations (see e.g. [29]). Taking ϕ∗ to
be the half-squared k-support norm, as described above, we get the following algorithm:

yt+1 = yt − ηt∇f(xt) (4.11)

xt+1 = prox 1
2δ

(∥·∥spk)2(
yt+1

δ
) (4.12)

We can now describe a few properties of such an algorithm above:

• The iterates xt may not be sparse anymore: the operator prox 1
2δ

(∥·∥spk)2(
yt+1

δ
) can be

seen as a relaxed version of hard-thresholding.

• 4.7 and 4.8 are characteristic equations of dual averaging algorithm, since 1
2
(∥ · ∥spk)2 +

1
2
(∥ · ∥22) is strongly convex, cf. Definition 4 in [80]. Therefore such algorithm is a

vanilla dual averaging algorithm, and as such, will minimize f if f is convex, which
will not result in a sparse output of the algorithm in general (unless for instance when
f admits a unique sparse minimizer).

• However, for overparameterized linear models, mirror descent (which is similar to
dual averaging, see also [80]) is known to have an implicit bias [69], which can be
sparsity enforcing for instance if the regularizer used is sparsity enforcing, see for
instance [29]. Therefore such an algorithm above based on the k-support norm could
still be useful to enforce some sparsity of the solution, in some cases.

In the next section, we will follow the recommendation from the last item above, and
analyze a simpler case of the algorithm above, where f is taken as a quadratic function,
and where the problem we seek to solve is the problem of sparse recovery. We will use an
iterative regularization methods (see e.g. [99, 105]), which is a method similar to Bregman
iterations as above, but with an early stopping stage, and which is known to have specific
sparsity guarantees for the returned solution (hence their applicability for sparse recovery),
as we seek. We will solve the following problem: we assume that we observe data of the
following form, where X denotes a sensing matrix, yδ is a vector of noisy observations, w∗

158

denotes the true sparse model which we wish to recover, and ϵ denotes a vector of noise, of
magnitude bounded by δ > 0:

yδ = Xw∗ + ϵ, (4.13)

with ∥ϵ∥ ≤ δ. (4.14)

In the above problem, we wish to recover w∗. To that end, we will seek to solve the following
problem:

min
x

R(x) s.t. Xw = yδ, (4.15)

with R(w) = F (w) + α
2
∥w∥22 with F (w) = 1−α

2
(∥w∥spk)2. As mentioned above, we will

solve this problem with a specific instantiation of the algorithm from [99], and which will be
similar to an accelerated version of the Bregman Iterations algorithm with k-support norm
described above. We now describe our full algorithm and setting in the sections below,
which are based on our paper [44].

4.2 Introduction

Sparse recovery is ubiquitous in machine learning and signal processing, with applications
ranging from single pixel camera, to MRI, or radar1. In particular, with the ever-increasing
amount of information, real-life datasets often contain much more features than samples:
this is for instance the case in DNA microarray datasets [63], text data [85], or image data
such as fMRI [16], where the number of features is generally much larger than the number
of samples. In these high-dimensional settings, finding a linear model is under-specified,
and therefore, one often needs to leverage additional assumptions about the true model,
such as sparsity, to recover it. Usually, the problem is formulated as follows: we seek to
recover a sparse vector w∗ ∈ R from its noisy linear measurements

yδ = Xw∗ + ϵ (4.16)

Here, yδ is a noisy measurement vector, i.e. a noisy version of the true target vector
y = Xw∗, X = [x1, ...,xd] ∈ Rn×d is a measurement matrix, also called design matrix,
ϵ ∈ Rn is some bounded noise (∥ϵ∥2 ≤ δ, with δ ∈ R+), and w∗ is the unknown k-sparse
vector, i.e. containing only k non-zero components, that we wish to estimate with a
vector ŵ obtained by running some sparse recovery algorithm on observations yδ and X.
Unfortunately, this problem is NP-hard in general, even in the noiseless setting [107].

However, most of those iterative methods are based on the ℓ1 norm which requires
restrictive applicability conditions and could fail in many cases. We discuss such related
works in more details in the next section. Therefore, achieving sparse recovery with iterative
regularization methods under a wider range of conditions has yet to be further explored.

To address this issue, we propose a novel iterative regularization algorithm, IRKSN,
based on the k-support norm regularizer rather than the ℓ1 norm. That norm was first

1An introduction to this topic, as well as an extensive review of its applications can be found in [55]
and [150].

159

introduced in [3], as a way to improve upon the ElasticNet for sparse prediction. More
precisely, we plug the k-support norm regularizer, for which there exist efficient proximal
computations [3, 102], into the primal-dual framework for iterative regularization described
in [99].

We then provide some conditions for sparse recovery with IRKSN, and discuss on a
simple example how they compare with traditional conditions for recovery with ℓ1 norm
regularizers.

More precisely, we elaborate on why such specific conditions include cases that are not
included in some usual sufficient conditions for recovery with traditional methods based
on the ℓ1 norm (see Figure 4.2) (we describe such conditions for recovery with ℓ1 norm in
more details in Assumption 14). Since those types of conditions are still slightly opaque to
interpret, we do as is common in the literature (such as in [78, 165]), namely, we discuss
and compare those solutions with the help of an illustrative example. We also give an
early stopping bound on the model error of IRKSN with explicit constants, achieving the
standard linear rate for sparse recovery.

Finally, we illustrate the applicability of IRKSN on several experiments, including a
support recovery experiment with a correlated design matrix, and show that it allows to
identify the support more accurately than its competitors.

Contributions. We summarize the main contributions of our paper as follows:

1. We introduce a new algorithm, IRKSN, which allows recovery of the true sparse vector
under conditions for which some sufficient conditions for recovery with ℓ1 norm do
not hold. We discuss the difference between those conditions on a detailed example.

2. We give an early stopping bound on the model error of IRKSN with explicit constants,
achieving the standard linear rate for sparse recovery.

3. We illustrate the applicability of our algorithm on several experiments, including a
support recovery experiment with a correlated design matrix, and show that it allows
support recovery with a higher F1 score than its competitors.

4.3 Preliminaries

Notations. We first recall a few definitions and notations used in the rest of the paper.
We denote all vectors and matrices variables in bold font. For S ⊆ [d], S̄ denotes [d] \ S.
For any matrix M ∈ Rn×d, mi denotes its i-th column for i ∈ N, M⊤ its transpose, M † its
Moore-Penrose pseudo-inverse [62], ∥M∥ its nuclear norm, and MS its column-restriction
to a support S ⊆ [d], i.e. the n× |S| matrix composed of the |S| columns of M of indices
in S. For a vector w ∈ Rd, supp(w) denotes its support w, that is, the coordinates of the
non-zero components of w, wi denotes its i-th component, |w|↓i denotes its i-th top absolute
value, and ∥w∥ denotes its ℓ2 norm.

160

Method Condition on X Bound on ∥ŵ −w∗∥ Complexity

IHT [20] RIP O(δ) O(T)

Lasso [139] max
ℓ∈S̄
|⟨X†

Sxℓ, sgn(w
∗
S)⟩| < 1(2) O(δ) O(ΛT)

ElasticNet
[165]

- - O(ΛT)

KSN pen. [3] - - O(ΛT)
OMP [141] RIP O(δ) O(k)

SRDI [118]
{ ∃γ ∈ (0, 1] : X⊤

S XS ≥ nγId,d
∃η ∈ (0, 1) : ∥XS̄X

†
S∥∞ ≤ 1− η

O(σ
√

k log d
n) (1) O(T)

IROSR [145] RIP O(σ
√

k log d
n) (1) O(T)

IRCR [105] max
ℓ∈S̄
|⟨X†

Sxℓ, sgn(w
∗
S)⟩| < 1(2) O(δ) O(T)

IRKSN
(ours)

max
ℓ∈S̄
|⟨X†

Sxℓ,w
∗
S⟩| <

min
j∈S
|⟨X†

Sxj ,w
∗
S⟩|

O(δ) O(T)

Table 4.1: Comparison of the existing algorithms for sparse recovery in the literature,
including conditions on X and w∗ sufficient for recovery. T is the number of iterations
each algorithm is ran for, and Λ is the number of values of λ that need to be tried out (for
penalized methods). (1) assuming ϵ ∼

i.i.d.
N (0, σ2). (2): Additionally, XS should be injective.

Figure 4.2: Conditions for recovery in various settings: l1SC corresponds to the condi-
tion maxℓ∈S̄ |⟨X†

Sxℓ, sgn(w
∗
S)⟩| < 1. “ours” denotes the condition maxi∈S̄ |⟨X†

Sxi,w
∗
S⟩| <

minj∈S |⟨X†
Sxj,w

∗
S⟩|. c denotes some constant in [0, 1]. Here 3k-RIP is shown for indicative

purposes, corresponding to the condition for IHT as described in [20]. As we can see, for
some cases (in blue), only IRKSN (our algorithm) can provably ensure sparse recovery.

More generally ∥w∥p denotes its ℓp norm for p ∈ [1,+∞), and ∥w∥0 denotes its number
of non-zero components. wS ∈ Rk denotes its restriction to a support S of size k, that is,
the sub-vector of size k formed by extracting only the components wi with i ∈ S. sgn(w)
denotes the vector of its signs (with the additional convention that if wi = 0, sgn(w)i = 0).

161

Related works. Due to the NP-hard nature of sparse recovery, existing methods are
known to suffer either from restrictive (or even unknown) applicability conditions, or high
computational cost. Amongst those methods, a first group of methods can achieve an
exact sparsity k of the estimate ŵ: Iterative Hard Thresholding [20] returns an estimate ŵ
which recovers w∗ up to an error ∥ŵ −w∗∥ ≤ O(δ), if the design matrix X satisfies some
Restricted Isometry Property (RIP) [20]. However, as mentioned in [76], this condition is
very restrictive, and does not hold in most high-dimensional problems. Greedy methods, such
as Orthogonal Matching Pursuit (OMP) [141], also can return an exactly k-sparse vector,
and bounds on the recovery of a (generalized version of) OMP, of the type ∥ŵ−w∗∥ ≤ O(δ),
can be found for instance in [148], under some RIP condition.

A second set of methods for sparse recovery solve the following penalized problem:

(P) : min
w
∥Xw − yδ∥2 + λR(w) (4.17)

Where R is a regularizer, such as the ℓ1 norm as is done in the Lasso method [139], and λ
is a penalty parameter that needs to be tuned. For a given λ, (P) is usually solved through
a convex optimization algorithm, and returns a solution ŵ of (P), as an estimate of w∗.
Amongst those, one of the most important algorithms for sparse recovery, the Lasso [139],
has been proven in [65] to give a bound ∥ŵ − w∗∥ ≤ O(δ) under the so-called source
conditions (described in Condition 4.3 from [65]) which are implied by the following more
intuitive conditions: XS is injective, and maxℓ∈S̄ |⟨X†

Sxℓ, sgn(w
∗
S)⟩| < 1 (we detail this

implication in Assumption 14). Following the Lasso, the ElasticNet was later developed to
solve the problem of a design matrix with possibly high correlations. However, although
some conditions for statistical consistency exist for the ElasticNet [78], to the best of
our knowledge, there is no model error bound (and conditions thereof) for recovery with
ElasticNet. Finally, the k-support norm regularization has also been used successfully as a
penalty [3], with even better empirical results than the ElasticNet, but no explicit error
bounds on model error (and the conditions thereof) currently exists: indeed, their work was
mostly focused on sparse prediction and not sparse recovery. Efficient solvers have later
been derived for the Lasso using for instance coordinate descent and its variants [19,53].
However, even with efficient solvers, these penalized methods need to tune the parameter λ,
which is very costly.

Recently, iterative regularization methods have emerged as a promising fast approach
because they can achieve sparse recovery in one pass through early stopping, rather than
the tedious grid-search used in traditional methods. They solve the following problem

(I) : min
w

R(w)

s.t. Xw = yδ (4.18)

An iterative algorithm is used to solve it, and returns some ŵ to estimate w∗. Importantly, ŵ
is obtained by stopping the algorithm before convergence, also called early stopping. One of
the first amongst these methods, SRDI [118], achieves a rate of ∥ŵ−w∥ ≤ O(σ

√
k log d

n
) with

high probability, assuming ϵ ∼
i.i.d.
N (0, σ), and two conditions: (1) ∃γ ∈ (0, 1] : X⊤

S XS ≥

162

nγId,d (Restricted Strong Convexity) and (2) ∃η ∈ (0, 1) : ∥XS̄X
†
S∥∞ ≤ 1−η. IROSR [145]

uses an iterative regularization scheme that is based on a reparameterization of the problem
(I). They prove a high probability model consistency bound of ∥ŵ −w∗∥ ≤ O(σ

√
k log d

n
),

assuming the ((k+1, c)-RIP for some constant c(k,w∗,X, ϵ). Similar to their work is [162]:
under similar conditions, they also obtain a similar rate. Finally, [105] provide bounds of
the form ∥ŵ −w∥ ≤ O(δ), under the same source conditions as in [65].

However, most of those iterative methods are based on the ℓ1 norm which requires
restrictive applicability conditions and could fail in many cases. Indeed, in those cases,
the conditions for recovery with the methods described above (e.g. RIP, or the sufficient
conditions for recovery with Lasso that we discussed above) do not hold anymore. For
instance, in gene array data [165], it is known that many columns of the design matrix are
correlated, and that RIP does not hold. It is therefore crucial to come up with algorithms
for which recovery is provably possible under different conditions, which we tackle in this
paper.

k-support Norm Regularization. We now introduce the k-support norm, which is the
main component of our algorithm, as well as its proximal operator. The k-support norm
was first introduced in [3], as the tightest convex relaxation of the intersection of the ℓ2 ball
and the ℓ0 ball. It was later generalized to the matrix case [100,102], as well as successfully
applied to several problems, including for instance fMRI [16,60]. We give below its formal
definition, with the following variational formula from [3]:

Definition 15 ([3, 101]). Let k ∈ {1, ..., d}. The k-support norm ∥ · ∥spk is defined, for
every w ∈ Rd, as:

∥w∥spk = min

{∑
I∈Gk

∥vI∥2 : vI ∈ Rd, supp (vI) ⊆ I,

∑
I∈Gk

vI = w

}
(4.19)

where Gk denotes the set of all subsets of {1, ..., d} of cardinality at most k.

In other words, the k-support norm is equal to the smallest sum of the norms of some
k-sparse atoms (the yI above) that constitute w: as studied in [37], the k-support norm is
indeed a so-called atomic norm. One can also see from this definition that the k-support
norm interpolates between the ℓ1 norm (which it is equal to if k = 1) and the ℓ2 norm
(which it is equal to if k = d). As discussed in [3], another interpretation of the k-support
norm is that it is equivalent to the Group-Lasso penalty with overlaps [75], when the set of
overlapping groups is all possible subsets of {1, ..., d} of cardinality at most k. Finally, we
introduce the proximal operator [121] below, that will be used in our algorithm:

Definition 16 (Proximal operator, [121]). The proximal operator for a function h : Rd → R
is defined as:

proxh(z) = argmin
w

h(w) +
1

2
∥w − z∥22 (4.20)

163

A closed form for the proximal operator of the squared k-support norm was first given
in [3], and more efficient computations have been found e.g. in [102], which we will use in
IRKSN, as described in Section 4.6.5.

4.4 The Algorithm

In this section, we describe the IRKSN (Iterative Regularization with k-Support Norm)
algorithm. It is based on the general accelerated algorithm from [99], in which we plug a
regularization function based on the k-support norm. More precisely, [99] describe a general
regularization algorithm for model recovery based on a primal-dual method, and an early
stopping rule. As they do, we will solve the following problem approximately (i.e. with
early stopping):

(Iks) : min
w

R(w)

s.t. Xw = yδ (4.21)

with a specific regularizer that we introduce: R(w) = F (w) + α
2
∥w∥22 with F (w) =

1−α
2
(∥w∥spk)2, for some constant 1 > α > 0 which will be described later. The algorithm

that we will use to solve approximately (Iks) is the Accelerated Dual Gradient Descent
(ADGD) described in [99], which is an accelerated version of a primal-dual method that is
known in the literature under many names, and that comprises the following steps, with γ
being some learning rate, and v̂t being a dual variable:
primal projection step
ŵt ← proxα−1F (−α−1X⊤v̂t)
dual update step
v̂t+1 ← v̂t + γ(Xŵt − yδ)
The method above is most commonly known in the signal processing and image denoising
literature as Linearized Bregman Iterations, or Inverse Scale Space Methods [32,118]. In the
optimization literature, it is mostly known as (Lazy) Mirror Descent [27], also called Dual
Averaging [111,151]. The main idea in [99] is to early stop the algorithm at some iteration
T , before convergence. We present the full accelerated version, IRKSN, in Algorithm 10.

Algorithm 10: IRKSN
Input : v̂0 = ẑ−1 = ẑ0 ∈ Rd, γ = α|X|−2, θ0 = 1
for t = 0 to T do

ŵt ← proxα−1F
(
−α−1XT ẑt

)
r̂t ← proxα−1F

(
−α−1XT v̂t

)
ẑt ← v̂t+ γ

(
Xr̂t − yδ

)
θt+1 ←

(
1 +

√
1 + 4θ2t

)
/2

v̂t+ 1 = ẑt+ θt−1
θt+1

(ẑt− ẑt− 1)

end

164

4.5 Main Results

In this section, we introduce the main result of our paper, which gives specific conditions
for robust recovery of w∗, and early stopping bounds on ∥ŵt −w∗∥ for IRKSN.

4.5.1 Assumptions

We will present several sufficient conditions for recovery with the k-support norm, which
are similar to the sufficient conditions needed for ℓ1-based recovery that we describe in
Assumption 14 (we will then elaborate on the differences between such conditions). The
first assumption below is a variant of the usual feasibility assumption of the noiseless
problem [55]: it simply states that w∗, the true model that we wish to recover, is a feasible
solution of the noiseless problem, and that it is k-sparse. Additionally, if several feasible
solutions of same support than w∗ exist, w∗ should be the smallest norm one (we will
elaborate on such condition in this section). Recall from the Introduction that y is the true
target vector, i.e. uncorrupted by noise.

Assumption 12. w∗ is k-sparse of support S ⊂ [d], and is a solution of the system
(L) : Xw = y. In addition, w∗ is the smallest ℓ2 norm solution of (L) on its support, that
is, w∗ is such that:

w∗
S = arg min

z∈Rk:XSz=y
∥z∥2 (4.22)

We now provide our main assumption, which is intrinsically linked to the structure of
the k-support norm, and which is, up to our knowledge, the first condition of such kind in
the sparse recovery literature.

Assumption 13. w∗ verifies:

max
ℓ∈S̄
|⟨X†

Sxℓ,w
∗
S⟩| < min

j∈S
|⟨X†

Sxj,w
∗
S⟩| (4.23)

Up to our knowledge, we are the first to provide such assumptions for recovery with a
k-support norm based algorithm: although [37] proposed a k-support norm based algorithm
and corresponding conditions for recovery, those conditions only apply in the case of a
design matrix X with values which are i.i.d. samples from a Gaussian distribution.

4.5.2 Discussion on the Assumptions

In this section, we attempt to interpret the assumptions above in simple terms, and to
compare them to some similar sufficient conditions for recovery with ℓ1 norm. More precisely,
the condition below implies Condition 4.3 from [65], which latter is shown in [65] to be
a necessary and sufficient condition for achieving a linear rate of recovery with ℓ1 norm
Tikhonov regularization. We prove such implication in Section 4.6.2.

165

Assumption 14 (Recovery with ℓ1 norm.). Let w∗ be supported on a support S ⊂ [d]. w∗

is such that:

(i) Xw∗ = y

(ii) XS is injective

(iii) maxℓ∈S̄ |⟨X†
Sxℓ, sgn(w

∗
S)⟩| < 1

Below, we now compare this assumption to ours.

The min ℓ2 norm solution. In our Assumption 12, the minimum ℓ2 norm condition is
actually not restrictive, compared to Assumption 14: indeed, in Assumption 14 XS needs
to be injective, which implies that there needs to be only one solution w∗

S on S such that
XSw

∗
s = y: we can also work in such situations, but we also include the additional cases

where there are several solutions on S (we just require that w∗ is the minimum norm one)
: XS does not need to be injective in our case. Importantly we can deal with cases with
n < k, when Lasso (and ℓ1 iterative regularization methods) cannot (that is, we can obtain
recovery in a regime where the number of samples n is even lower than the sparsity of the
signal k). Note that for the Lasso, the condition n ≥ k is even necessary : indeed, when
n < k, the Lasso is known to saturate [165] and recovery is impossible: interestingly, there
is no such constraint when using a k-support norm regularizer (similarly to recovery with
ElasticNet).

Dependence on the sign. As we can observe, Assumption 14 is verified or not based
on sgn(w∗

S). This implies that irrespective of the actual values of w∗, recovery will be
possible or not only based on sgn(w∗

S). On the contrary, our Assumption 13 depends on
w∗ itself.

Case where XS is injective. In the case where XS is injective (as will happen
in most cases in practice when n > k, i.e. unless there is some spurious exact linear
dependence between columns), it is even easier to compare Assumptions 13 and 14. Indeed,
since in that case we have that XS is full column rank, we then have : X†

SXS = Ik×k.
Therefore, Assumption 13 can be rewritten into: maxℓ∈S̄ |⟨X†

Sxℓ,w
∗
S⟩| < minj∈S |w∗

i |, which
is equivalent to:

max
ℓ∈S̄
|⟨X†

Sxℓ,
w∗

S

minj∈S |w∗
i |
⟩| < 1 (4.24)

Therefore, we can notice that if w∗
S = γ sgn(w∗

S) for some γ > 0 (that is, each component of
w∗

S have the same absolute value), both Assumptions 13 and 14 become equivalent (because
then: w∗

S

minj∈S |w∗
i |
= sgn(w∗

S)). However, the two conditions 13 and 14 may differ depending
on the relative magnitudes of the entries in w∗

S. In particular, it may happen that our
Assumption 13 is verified even if the Assumption 14 is not verified. We analyze such an
example in Example 1.

4.5.3 Early Stopping Bound

We are now ready to state our main result:

166

Theorem 10 (Early Stopping Bound). Let δ ∈]0, 1] and let (ŵt)t∈N be the sequence
generated by IRKSN. Assuming the design matrix X and the true sparse vector w∗ sat-
isfy Assumptions 12 and 13, and with α < η

∥w∥∞ with η := minj∈S |⟨(XSX
⊤
S)

†y,xj⟩| −
maxℓ∈S̄ |⟨(XSX

⊤
S)

†y,xℓ⟩|, we have for t ≥ 2:

∥ŵt −w∗∥2 ≤ atδ + bt−1 (4.25)

with a = 4∥X∥−1 and b =
2∥X∥∥(X⊤

S)
†w∗

S∥
α

(4.26)

In particular (if δ > 0), with tδ = ⌈cδ−1/2⌉, for some c > 0:

∥ŵt −w∗∥2 ≤ (a(c+ 1) + bc−1)δ1/2 (4.27)

Proof. Proof in Section 4.6.3.

Discussion. We can notice in Theorem 10 above that b is large when α is small: therefore,
if the inequality in 13 is very tight, as a consequence, α will need to be taken small, and b
will become large. Therefore, we can say that the larger the margin by which Assumption
13 is fulfilled is, the better the retrieval of the true vector w∗ is (because the larger we can
choose α).

4.6 Proofs of the Main Results

4.6.1 Notations and Definitions

First, we describe some of the notations that will be used in this Section. [v]S denotes the
restriction of a vector v to the support S, [v]i denotes its i-th component, M⊤ denotes the
transpose of a matrix M , and M † denotes the Moore-Penrose pseudo-inverse of M [62].
Ir×r denotes the identity matrix in Rr,r. [d] denotes the set {1, ..., d}, and [dk] denotes the set
of all the sets of k elements from {1, ..., d}. S̄ denotes the complement in [d] of a support S,
that is, all the integers from [d] that are not in S. ∂f denotes the subgradient of a function
f [127]. conv(A) denotes the convex hull of a set of vectors A ⊂ Rd (that is, the set of all
the convex combinations of elements of A). We then introduce the following definitions:

Definition 17 (Legendre-Fenchel dual [127]). For any function f : Rd → R ∪ {−∞,+∞},
the function f ∗ : Rd → R defined by

f ∗(y) := sup
w
{⟨y,w⟩ − f(w)} (4.28)

is the Fenchel conjugate or dual to f .

Definition 18 (hard-thresholding operator [20]). We define the hard-thresholding operator
for all z ∈ Rd as the set πHT (z) ⊂ Rd below:

πHT (z) := arg min
w∈Rd s.t.∥w∥0≤k

∥w − z∥22 (4.29)

167

Remark 17. πHT (z) keeps the k-largest values of z in magnitude: but if there is a tie
between some values, several solutions exist to the problem above, and the set πHT (z) is not
a singleton.

Example 2. With k = 1: πHT ((2, 1)) = {(2, 0)} and πHT ((2, 2)) = {(2, 0), (0, 2)}
Definition 19 (top-k norm). We define the following top-k norm ∥ · ∥(k), for all w ∈ Rd:

∥w∥(k) = ∥π∗
HT (w)∥2 (4.30)

Where π∗
HT (w) denotes any element from πHT (w) (since they all have the same norm). In

other words, ∥w∥(k) is the ℓ2 norm of the top-k elements from w.

4.6.2 Recall on the Conditions for Recovery with ℓ1 Regularization

In this section, we briefly recall a conditions for sparse recovery with ℓ1 norm regularization
from [65], and why it is implied by Assumption 14. The authors of [65] proved in their
Theorem 4.7 that such Assumption 15 below is a necessary and sufficient condition for
achieving a linear rate of convergence for Tikhonov regularization with a priori parameter
choice. We present below such condition 15.

Assumption 15 (Cond. 4.3 [65]).

1. w∗ solves the equation Xw = y

2. Strong source condition: There exist some λ ∈ Rn such that :

(i): X⊤λ ∈ ∂∥ · ∥1(w∗) and (ii): |⟨xi,λ⟩| < 1 for i ̸∈ supp(w∗) (4.31)

where supp(w∗) is the support of w∗ (that is, the set of the coordinates of its nonzero
elements)

3. Restricted injectivity: The restricted mapping Xsupp(w∗) is injective.

We now show that this Assumption 15 is implied by Assumption 14:

Lemma 19. Assumption 14 =⇒ Assumption 15.

Proof. Assume Assumption 14, and take λ = (X†
S)

⊤sign(w∗
S). We now have the

following equality (A): X⊤
S λ = X⊤

S (X
†
S)

⊤sign(w∗
S) = (X†

SXS)
⊤sign(w∗

S)
(a)
= sign(w∗

S) =
[∂∥ · ∥1(w∗)]S where (a) follows by property of the pseudo-inverse and the fact that XS is
injective (and therefore full column rank).

Additionally, from condition 3 in Assumption 14, we have:

max
ℓ∈S̄
|⟨X†

Sxℓ, sgn(w∗
S)⟩| < 1 =⇒ max

ℓ∈S̄
|⟨xℓ, (X

†
S)

⊤sgn(w∗
S)⟩| < 1 =⇒ max

ℓ∈S̄
|⟨xℓ,λ⟩| < 1

(4.32)
This inequality above corresponds to (ii) from the strong source condition above (15 (2.
(ii))). Therefore, (since that last inequality also implies that for all i ̸∈ S, ⟨xℓ,λ⟩ ∈ [−1, 1] =
[∂∥ · ∥1(w∗)]i, which, combined with (A) implies 15 (2. (i)), we finally have that this λ
verifies the existence conditions from 15.

168

4.6.3 Proof of Theorem 10

Proof of Theorem 10. Theorem 10 follows by combining Lemma 20 with Theorem 11 from
[99]: in particular, when plugging from Lemma 20 the value (denoted by λ∗ in Lemma 20
(2)) of the solution of the dual problem of equation 4.34, (denoted by v∗ in Theorem 11)
we obtain:

∥v∗∥ = ∥(X⊤
S)

†w∗
S∥ (4.33)

Lemma 20. Under Assumptions 12 and 13, we have, with λ∗ := −(X⊤
S)

†w∗
S:

(1) −X⊤λ∗ ∈ ∂R(w∗)

(2) λ∗ is solution to the dual problem of the noiseless problem below:

(Iks-noiseless) : min
w

R(w)

s.t. Xw = y (4.34)

Proof. Proof of (1):

We start by re-writing the condition −X⊤λ ∈ ∂R(w∗) (for any given λ) into a form
easier to check:

First, recall that R(w) = 1−α
2
∥w∥spk

2 + α
2
∥w∥22. We then have, for any λ ∈ Rn:

{−X⊤λ ∈ ∂R(w∗)} ⇐⇒ {(1− α)∂(
1

2
∥ · ∥spk

2)(w∗) ∋ −X⊤λ− αw∗} (4.35)

(a)⇐⇒ {(1− α)w∗ ∈ ∂(
1

2
∥ · ∥2(k))(−X⊤λ− αw∗)} (4.36)

(b)⇐⇒ {(1− α)w∗ ∈ conv(πHT (−X⊤λ− αw∗))} (4.37)

Where (a) follows from Proposition 3 and Corollary 7, and (b) from Lemma 21.

Let us now define λ∗ := −(X⊤
S)

†w∗
S. We then have:

conv(πHT (−X⊤λ∗ − αw∗)) = conv(πHT (X
⊤(X⊤

S)
†w∗

S − αw∗)) (4.38)

We now use the fact that :

(A) maxℓ∈S̄ |⟨X†
Sxℓ,w

∗
S⟩| < minj∈S |⟨X†

Sxj,w
∗
S⟩|

(B) 0 < α <
minj∈S |⟨X†

Sxj ,w
∗
S⟩|−maxℓ∈S̄ |⟨X†

Sxℓ,w
∗
S⟩|

∥w∗∥∞ (from the choice of α described in Theorem
10)

169

Which implies, for all i ∈ S, that:

[|X(X⊤
S)

†w∗
S − αw∗|]i

(a)

≥ [|X(X⊤
S)

†w∗
S| − |αw∗|]i

= [|X(X⊤
S)

†w∗
S|]i − α[|w∗|]i

≥ [|X(X⊤
S)

†w∗
S|]i − α∥w∗∥∞

(b)
> [|X(X⊤

S)
†w∗

S|]i −min
j∈S
|⟨X†

Sxj,w
∗
S⟩|+max

ℓ∈S̄
|⟨X†

Sxℓ,w
∗
S⟩|

≥ max
ℓ∈S̄
|⟨X†

Sxℓ,w
∗
S⟩|

= max
ℓ∈S̄

[|X(X⊤
S)

†w∗
S|]ℓ

(c)
= max

ℓ∈S̄
[|X(X⊤

S)
†w∗

S − αw∗|]ℓ (4.39)

Where (a) follows from the reverse triangle inequality, (b) follows from (B), and (c) follows
from the fact that the support of w∗ is S (so: ∀j ∈ S̄ : w∗

j = 0).

Therefore, for all i ∈ S, ℓ ∈ S̄:

[|X(X⊤
S)

†w∗
S − αw∗|]i > [|X(X⊤

S)
†w∗

S − αw∗|]ℓ (4.40)

This allows us to simplify equation 4.38, given that the hard-thresholding operation
selects the top k-components of a vector (in absolute value), and using the fact that we
assumed that S is of size k (i.e. |S| = k) (so the conv operation disappears here because
since the inequality above is strict, there are no “ties” when computing the top-k components
(in absolute value); in other words, the convex hull of a singleton is that singleton itself):

Therefore, for all i ∈ [d]:

[conv
(
πHT (−X⊤λ∗ − αw∗)

)
]i =

{
⟨xi, (X

⊤
S)

†w∗
S⟩ − αw∗

i if i ∈ S
0 if i ∈ S̄

=

{
⟨xi, (X

⊤
S)

†X†
Sy⟩ − αw∗

i if i ∈ S
0 if i ∈ S̄

(a)
=

{
[X†

Sy]i − αw∗
i if i ∈ S

0 if i ∈ S̄

(b)
=

{
w∗

i − αw∗
i if i ∈ S

0 if i ∈ S̄

=

{
(1− α)w∗

i if i ∈ S
0 if i ∈ S̄

(4.41)

Where (a) follows from the following property of the pseudo-inverse for a matrix M ,
applied to M = X⊤

S : MM †(M⊤)† = (M⊤)†. (This property can be understood using
the Singular Value Decomposition (SVD) expression for the pseudo-inverse [62]: with M =

170

UDV ⊤, we have: MM †(M⊤)† = UDV ⊤V D−1U⊤UD−1V ⊤ = UD−1V ⊤ = (M⊤)†),
and (b) follows from the fact that w∗ is the min ℓ2 norm solution on its support S (as we
assumed in Assumption 12), so X†

Sy = w∗
S (III, 2, Corr. 3, [17], [123]).

Therefore, aggregating equation 4.41 for all indices, we finally obtain:

conv
(
πHT (−X⊤λ∗ − αw∗)

)
= (1− α)w∗ (4.42)

That is, λ∗ verifies equation 4.37.

So to sum up, under Assumptions 13 and 12, we have that, for λ∗ := −(X⊤
S)

†w∗
S:

−X⊤λ∗ ∈ ∂R(w∗).

Note: In addition, since equation 4.37 is equivalent to equation 4.35, plugging that
value of λ∗ into equation 4.35 we also have:

(1− α)∂(
1

2
∥ · ∥spk

2)(w∗) ∋X⊤(X⊤
S)

†w∗
S − αw∗ (4.43)

(This latter equation will be useful in the proof of (2) below)

Proof of (2):

We now turn to proving the second part (i.e. (2)) of Lemma 20.

As described in [99], the dual problem of equation 4.34 can be written as (see e.g.
Definition 15.19 in [10]):

min
v

R∗(−X⊤v) + ⟨y,v⟩ (4.44)

where R∗ denotes the Fenchel Dual of R (see Definition 17).

Let us define, for all v ∈ Rn: f(v) = R∗(−X⊤v)

The first order optimality condition of problem equation 4.44 can be written as:

∂f(v) + y ∋ 0 (4.45)

Which is equivalent to:
−∂f(v) ∋ y (4.46)

Therefore, if we find v such that the expression above is verified, then that v is solution
of equation 4.44.

Now, from Theorem 23.9 in [127], we have that: −X∂R∗(−X⊤v) ⊂ ∂f(v) (that is, the
subgradient verifies a similar chain rule as the usual gradient, in one direction of inclusion).

Note now that since R is α-strongly convex (due to the squared ℓ2 norm term), R∗ is
differentiable and α-smooth [81] and therefore, its gradient is well defined, so we can rewrite
∂R∗ into ∇R∗ (the subgradient is a singleton).

Now, take v∗ := −(X⊤
S)

†w∗
S.

171

Let us compute ∇R∗(−X⊤v∗) = ∇R∗(X⊤(X⊤
S)

†w∗
S).

Let us denote z := ∇R∗(X⊤(X⊤
S)

†w∗
S). From 3, we have the following equivalences:

X⊤(X⊤
S)

†w∗
S ∈ ∂R(z)

⇐⇒ X⊤(X⊤
S)

†w∗
S ∈ (1− α)∂(

1

2
∥ · ∥spk

2)(z) + αz

⇐⇒ X⊤(X⊤
S)

†w∗
S − αz ∈ (1− α)∂(

1

2
∥ · ∥spk

2)(z) (4.47)

Now, we know from equation 4.43 that taking z := w∗ satisfies expression equation 4.47.
Therefore: ∇R∗(−X⊤v∗) = w∗

Now, we can see that the proof is complete, since we know from Assumption 12 that
y = Xw∗. So using the above, we have:

y = Xw∗ = X∇R∗(−X⊤v∗) ∈ {X∇R∗(−X⊤v∗)} = X∂R∗(−X⊤v∗) ⊂ −∂f(v∗)
(4.48)

So to sum up, we have that: y ∈ −∂f(v∗), which means that v∗ = −(X⊤
S)

†w∗
S is solution

of the dual problem of equation 4.34.

Theorem 11 ([99]). Let δ ∈]0, 1] and let (ŵt)t∈N be the sequence generated by ADGD
(cf. [99]). Assume that there exists λ ∈ Rn such that −XTλ ∈ ∂R(w∗). Set a = 4∥X∥−1

and b = 2∥X∥∥v∗∥/α, where v∗ is a solution of the dual problem of equation 4.34. Then,
for every t ≥ 2,

∥ŵt −w∗∥ ≤ atδ + bt−1. (4.49)

In particular, choosing tδ = ⌈cδ−1/2⌉ for some c > 0,

∥ŵt −w∗∥ ≤
[
a(c+ 1) + bc−1

]
δ1/2. (4.50)

Proof. Proof in [99]

4.6.4 Useful Results

Here we present some lemmas and theorems that are used in the proofs above:

Theorem 12 (Corollary 4.3.2, [8]). Let f1, ..., fm be m convex functions from Rd to R and
define

f := max{f1, ..., fm}. (4.51)

Denoting by I(w) := {i : fi(w) = f(w)} the active index-set, we have:

∂f(w) = conv(∪∂fi(w) : i ∈ I(w)) (4.52)

Proof. Proof in [8].

172

Lemma 21 (Subgradient of the half-squared top-k norm). Let n be the (half-squared) top
k-norm: n(w) = 1

2
∥w∥2(k). We have:

∂n(w) = conv(πHT (w)) (4.53)

Proof. Let us denote each possible supports of k coordinates from [dk] by Ii for i = 1, ...,
(
d
k

)
The top-k norm can be written as follows:

n(w) = max
i

ni(x) = max{n1(w), ..., n(dk)
(w)} (4.54)

where each ni =
1
2
∥wIi∥22, with wIi the thresholding of w with all coordinates not in Ii

set to 0. Let us denote, for a given w ∈ Rd, Π(w) ⊂ [dk] to be the set of supports such
that for any j ∈ Π(w): nj(w) = n(w). In other words, Π(w) denotes the active index set
described in Theorem 12. Those supports are those which select the top-k components of
w in absolute value (several choices are possible). In other words:

πHT (w) = {wIj : j ∈ Π(w)} (4.55)

Now, we know that for all i ∈
(
d
k

)
, ni is differentiable, since ni is simply the half squared ℓ2

norm of the thresholding of w on a fixed support Ii. Since it is differentiable, its subgradient
is thus a singleton composed of its gradient: ∂ni(w) = {∇ni(w)} = {wIi}.

Therefore, from Theorem 12, we have:

∂f(w) = conv(∇fi(w) : i ∈ Π(w)) = conv(wIj : j ∈ Π(x)) = conv(πHT (w)) (4.56)

Proposition 3 (Proposition 11.3, [127]). For any proper, lsc, convex function f , denote by
f ∗ its Fenchel dual defined above in 17. One has ∂f ∗ = (∂f)−1 and ∂f = (∂f ∗)−1.

Proof. Proof in [127].

Lemma 22 (Fenchel conjugate of a half squared norm [24] Example 3.27, p. 94). Consider
the function f(w) = 1

2
∥w∥2, where ∥ · ∥ is a norm, with dual norm ∥ · ∥∗. Its Fenchel

conjugate is f ∗(w) = 1
2
∥w∥2∗.

Proof. Proof in [24].

Lemma 23 (Dual of the k-support norm, [3], 2.1). Denote by (∥ · ∥)∗ the dual norm of a
norm ∥ · ∥. The top-k norm (see Definition 19) is the dual norm of the k-support :

(∥ · ∥spk)∗ = ∥ · ∥(k) (4.57)

Corollary 7.

(
1

2
∥ · ∥spk

2)∗ =
1

2
∥ · ∥2(k) (4.58)

Proof. Corollary 7 follows from Lemmas 22 and 23.

173

4.6.5 Proximal Operator of the k-support Norm

In this section, we describe the method that we use to compute the proximal operator of
the half-squared k-support norm, as is described in Algorithm 1 from [102]. In our code
(available at https://github.com/wdevazelhes/IRKSN_AAAI2024), we use an existing
implementation from the modopt package [54]. Note that Algorithm 1 from [102] was
originally described in a more general formulation, from which the algorithm described
below can be obtained by fixing a = 0, b = 1, and c = k (we refer the reader to [102] for
more details on what variables a, b, and c refer to).

Algorithm 11: Computation of x = proxλ
2
| · |(k)2 (w)

Input :Parameter: λ.
Output :x.

1. Sort points {αi}2di=1 =
{

λ
|wj | ,

1+λ
|wj |

}d

j=1
such that αi ≤ αi+1.; 2. Identify points αi

and αi+1 such that S(αi) ≤ k and S(αi+1) ≥ k by binary search.; 3. Find α∗

between αi and αi+1 such that S(α∗) = k by linear interpolation.; 4. Compute
θi(α

) := min(1,max(0, α|wi| − λ)) for i = 1 . . . , d.; 5. Return xi =
θiwi

θi+λ
for

i = 1 . . . , d.;

4.7 Illustrating Example

In this section, we describe a simple example that illustrates the cases where ℓ1 norm-based
regularization fails, and where IRKSN will successfully recover the true vector.

Example 1. We consider a model that consists of three “generating” variables
X(0), X(1) and X(2), that are random i.i.d. variables from standard Gaussian (we denote
X(0) ∼ N (0, 1) and X(1) ∼ N (0, 1) and X(2) ∼ N (0, 1)). Two other variables X(3) and X(4),
are actually correlated with the previous random variables: they are obtained noiselessly,
and linearly from those, with some vectors w(3) and w(4) that will be defined below:

X(3) = w
(3)
0 X(0) + w

(3)
1 X(1) + w

(3)
2 X(2) (4.59)

and
X(4) = w

(4)
0 X(0) + w

(4)
1 X(1) + w

(4)
2 X(2) (4.60)

In addition, similarly, the actual observations Y are formed noiselessly and linearly from
(X(0), X(1), X(2)), for some vector w(y):

Y = w
(y)
0 X(0) + w

(y)
1 X(1) + w

(y)
2 X(2) (4.61)

A graphical visualization of this construction can be seen on Figure 4.3. More precisely, we

174

https://github.com/wdevazelhes/IRKSN_AAAI2024

define the vectors w(3),w(4) and w(y) are defined as follows:

w(3) =

9/11
6/11
2/11
0
0

 ,w(4) =

1/3
14/15
2/15
0
0

 ,w(y) =

1
1
−4
0
0

 . (4.62)

We will generate such a dataset with n = 4: so the dataset will be composed of 4 samples of
X(0), X(1), X(2), X(3), X(4), which form the matrix X ∈ R4,5, with X = [x0,x1,x2,x3,x4]
and 4 samples of Y , which form the vector y ∈ R4. In our case, we have S = supp(w(y)) =
{0, 1, 2}, and therefore we just ensure that XS = [x0,x1,x2] is full column rank (which
should be the case with overwhelming probability since those three first vectors are sampled
from a Gaussian, and since we have n = 4 > k = 3). Our goal is to reconstruct the true
linear model of Y , which is w(y) from the observation of X and y. We can easily check

X(0)

X(1)

X(2)
X(3)

X(4)

Y

Figure 4.3: X(3), X(4) are correlated with X(0), X(1), X(2)

mathematically (using the closed form from the first column of Table 4.1), that this example
only verifies our condition (Assumption 13), but that it does not verify Assumption 14 (i.e.
it is in the blue area from Figure 4.2). Indeed, in that case, XS is full column rank, which
implies (XS)

†x3 = w(3) and (XS)
†x4 = w(4) [62]. We then have:

|⟨X†
Sx3, sgn(w

(y))⟩| = |⟨w(3), sgn(w(y))⟩| = 13/11 > 1 (4.63)

|⟨X†
Sx4, sgn(w

(y))⟩| = |⟨w(4), sgn(w(y))⟩| = 17/15 > 1 (4.64)

Therefore: maxℓ∈S̄ |⟨X†
Sxℓ, sgn(w

∗
S)⟩| = 13

11
> 1 Which means that Assumption 14 is not

verified. However, on the other hand, we have:

|⟨X†
Sx3,

w(y)

minj∈S |w(y)
i |
⟩| = |⟨w(3),

w(y)

minj∈S |w(y)
i |
⟩| = 7

11
(4.65)

|⟨X†
Sx4,

w(y)

minj∈S |w(y)
i |
⟩| = |⟨w(4),

w(y)

minj∈S |w(y)
i |
⟩| = 11

15
(4.66)

Therefore: maxℓ∈S̄ |⟨X†
Sxℓ,

w(y)

minj∈S |w(y)
i |
⟩| = 11

15
< 1. Therefore, from the Section Discussion

on the Assumptions, paragraph Case where XS is injective, we see that our Assumption 13
is verified here.

175

Comparison of the IRKSN path with Lasso. In Figure 4.4 below, we compare the
Lasso path (that is, the solutions found by Lasso for all values of the penalization λ), with
the IRKSN path (that is, the solutions found by IRKSN at every timestep). For indicative
purposes, we also provide the path of the ElasticNet on the same problem in Section 4.8.2.

(a) Lasso path (b) IRKSN path

Figure 4.4: Comparison of the path of IRKSN with Lasso. w(y)
i is the i-th component of w(y),

and λ is the penalty of the Lasso. We recall w(y)
0 = w

(y)
1 = 1, w

(y)
2 = −4, w(y)

3 = w
(y)
4 = 0:

only IRKSN recovers the true w(y).

(a) Model error ∥ŵ−
w(y)∥

(b) Model sparsity
∥ŵ∥0

Figure 4.5: Error and sparsity vs. number of iterations. Only IRKSN can recover the true
w(y) in this example.

As we can see, the Lasso is unable to retrieve the true sparse vector, for any λ. However
IRKSN can successfully retrieve it, which confirms the theory above.

In addition, this path from Figure 4.4 above illustrates well the optimization dynamics
of IRKSN: first, the true support of w(y) is not identified in the first iterations. But after a
few iterations, we observe what we could call a phenomenon of exchange of variable: w

(y)
0

is exchanged with w
(y)
1 , and later, w(y)

3 is exchanged with w
(y)
0 (by exchange, we mean that

at a timestep t, w(y)
0 (t) ̸= 0 but w

(y)
1 (t) = 0, but at timestep t + 1: w

(y)
0 (t + 1) = 0 and

w
(y)
1 (t+1) ≈ w

(y)
0 (t)). This can be explained by the fact that when α is small, the proximal

operator of the k-support norm approaches the hard-thresholding operator from [20]: hence
at a particular timestep the ordering (in absolute magnitude) of the components of X⊤ẑt

suddenly changes (with the components where the change occurs having about the same
magnitude at the time of change, if the learning rate is small), which results into such an
observed change in primal space. Additionally, in Figure 4.5, we run the iterative methods
from Table 4.1 (IRKSN, IRCR, IROSR and SRDI) (as well as IHT for comparison) on
Example 1, and measure the recovery error ∥ŵ − w(y)∥ as well as the sparsity ∥ŵ∥0 of

176

the iterates. As we can see, only IRKSN can achieve 0 error, that is, full recovery in
the noiseless setting. In addition, except IHT (which however fails to approach the true
solution), no method is able to converge to a 3-sparse solution, which is the true degree of
sparsity of the solution.

4.8 Experiments

4.8.1 Synthetic Example

Below we present experimental results to evaluate the sparse recovery properties of IRKSN.
Additional details on those experiments as well as further experiments are provided in the
Section.

Experimental Setting. We consider a simple linear regression setting with a correlated
design matrix, i.e. where the design matrix X is formed by n i.i.d. samples from d (we
take d = 50 here) correlated Gaussian random variables {X1, .., Xd} of zero mean and unit
variance, such that: ∀i ∈ {1, . . . , d} : E[Xi] = 0,E[X2

i] = 1; and ∀(i, j) ∈ {1, . . . , d}2, i ̸=
j : E[XiXj] = ρ|i−j|. More precisely, we generate each feature Xi in an auto-regressive
manner, from previous features, using a correlation ρ ∈ [0, 1), in the following way: we
have X1 ∼ N (0, 1) and σ2 = 1 − ρ2, and for all j ∈ {2, ..., d}: Xj+1 = ρXj + ϵj where
ϵj = σ∗∆, with ∆ ∼ N (0, 1). Additionally, w is supported on a support, sampled uniformly
at random, of k = 10 non-zero entries, with each non-zero entry sampled from a normal
distribution, and y is obtained with a noise vector ϵ created from i.i.d. samples from a
normal distribution, rescaled to enforce a given signal to noise ratio (SNR), as follows:
y = Xw∗ + ϵ with the signal to noise ratio defined as snr = ∥Xw∗∥

∥ϵ∥ . We generate this
dataset using the make_correlated_data function from the benchopt package [106]. Such
a dataset is commonly used to evaluate sparse recovery algorithms (see e.g. [105]), since it
possesses correlated features, which is more challenging for sparse recovery (see e.g. the
ElasticNet paper, which was motivated by such correlated datasets [165]). In addition,
the advantage of such synthetic dataset is that the support is known since it is generated,
which therefore allows to evaluate the performance of the algorithms on support recovery,
contrary to real-life datasets where a true sparse support of w is hypothetical (or at least
often unknown). Additionally, we can notice that such dataset resembles our Example
1, as some features are generated from other features. We evaluate the performance of
each final recovered model w using the F1 score on support recovery, defined as follows:
F1 = 2 PR

P+R
, with P the precision and R the recall of support recovery, which are defined as:

P = |supp(w∗)∩supp(w)|
|supp(w)| and R = |supp(w∗)∩supp(w)|

|supp(w∗)| . Therefore, the F1 score allows to evaluate
at the same time how much of the predicted nonzero elements are accurate, and how much
of the actual support has been found. A higher F1 score indicates better identification
of the true support. In each experiment (defined by a particular value of n, ρ, snr and a
given random seed for generating X, w∗ and ϵ), and for each algorithm, we choose the
hyperparameters from a grid-search, to attain the best F1-score (we give details on that

177

grid in the Section). For all algorithms which need to set a value k (IRKSN, KSN, IHT), we
set k to its true value k = 10. In a realistic use-case, since the support is unknown, one may
instead tune those hyper-parameters based on a hold-out validation set prediction mean
squared error, but tuning those hyperparameters directly for best support F1 score, as we
do, allows to evaluate the best potential support recovery capability of each algorithm (e.g.
for Lasso it informs us that there exist a certain λ, such that we can achieve such a support
recovery score). Each experiment is regenerated 5 times with different random seeds, and
the average of the obtained best F1 scores, as well as their standard deviation, are reported
in Figures 4.6(a), 4.6(c), and 4.6(b), for various values of the dataset parameters, while the
others are kept fixed. In Figure 4.6(a), we take ρ = 0.5, snr = 1., and n ∈ {10, 30, 50, 70, 90}.

(a) F1-score vs. n (b) F1-score vs. snr (c) F1-score vs. ρ

(d) F1-score vs. t

Figure 4.6: F1-score of support recovery in various settings.

In Figure 4.6(b), we take ρ = 0.5, snr ∈ {0.1, 0.5, 1., 2., 3.}, and n = 30. In Figure 4.6(c),
we take ρ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, snr = 1., and n = 30. Additionally, we plot on Figure
4.6(d) the evolution of the F1 score along training for iterative algorithms (i.e. algorithms
where there is no grid search over a penalty λ, which are IHT, IRKSN, IRCR, IROSR,
SRDI), in the case where n = 30, snr = 3, and ρ = 0.5.

Results. In all the experiments, as can be expected, we observe that support recovery is
more successful when the signal to noise ratio is high, the number of samples is greater,
and the correlation ρ is smaller (for that latter point, this is due to the fact that highly
correlated datasets are harder for sparse recovery, see e.g. [165] for a discussion on the topic).
But overall, we can observe that IRKSN consistently achieves better support recovery than
other algorithms from Table 4.1. Also, we can observe on Figure 4.6(d) that IHT and
IRKSN maintain a good F1 score after many iterations, while other methods implicitly
enforcing an ℓ1 norm regularization (IRCR, IROSR, SRDI) have poor F1 score in late
training.

178

4.8.1.1 Additional Experimental Details

In this section, we present the hyperparameters for the experiments in the above section,
for each algorithm. First, we fix k = 10 for all algorithms that require setting a parameter
k. We run the algorithms for a maximum number of iterations of 20,000. Note that in this
synthetic experiment we do not fit the intercept or center the data since the data has 0 mean.
For IHT, we search η in {0.0001, 0.001, 0.01, 0.1, 1.}. For Lasso, we use the implementation
lasso_path from scikit-learn [122], with its default parameters, which automatically
choses the path of λ based on a data criterion. For ElasticNet, we use the implementation
enet_path from scikit-learn [122], which similarly as above, automatically chooses the
path of λ based on a data criterion. In addition, we choose the recommended values
{.1, .5, .7, .9, .95, .99, 1} of ElasticNetCV for the relative weight of the ℓ1 penalty. For
the KSN algorithm (i.e. linear regression penalized with k-support norm), we choose the
strenght of the k-support norm penalty λ in {0.1, 1.}, and we set L (which is the inverse of
the learning rate) to 1e6 similarly as in Section 4.8.4.4. For OMP, we use the implementation
from scikit-learn [122]. For SRDI, we search for the parameters κ and α from [118],
respectively in the intervals {0.0001, 0.001, 0.01, 0.1, 1.} and {0.0001, 0.001, 0.01, 0.1, 1.}. For
IROSR, we search for the parameters η and α respectively in {0.0001, 0.001, 0.01, 0.1, 1.}
and {0.0001, 0.001, 0.01, 0.1, 1.}. For IRCR, we set τ and σ to 0.9√

2∥X∥2
(in order to verify

the condition of equation (6) in [105]) similarly as in section 4.8.4.4. For IRKSN (ours), we
search α (from Algorithm 10) in {0.0001, 0.001, 0.01, 0.1, 1, 10}. Our results are produced
on a server of CPUs with 16 cores the experiment takes a few hours to run.

4.8.2 Path of IRKSN vs Lasso vs ElasticNet

In this section, we plot in Figure 4.7 the path of ElasticNet (with an ℓ1 ratio of 0.8, i.e. its
penalty is λ(0.8∥ · ∥1 + 0.2∥ · ∥22)), in addition to the plot of the Lasso path and the IRKSN
path, from Section Illustrating Example. As we can see, the ElasticNet, as the Lasso, cannot
recover the true sparse vector.

4.8.3 fMRI Decoding

4.8.3.1 Setting

Data-set Construction. We consider a functional MRI (fMRI) decoding experiment,
where observations X are activity recordings (3D activity voxel maps) of fMRI for several
subjects which are presented with images of two different classes, i.e. where the observed
target yδ comprises labels from the set {class1, class2} converted to -1 and 1 respectively.
It was shown experimentally in [16] that k-support norm regularization (as a penalty)
performs significantly better than Lasso on such kind of fMRI tasks: we therefore wish
to evaluate whether this is true also for iterative regularization with k-support norm. We
use the Haxby dataset [71], downloaded with the use of the nilearn package [1]. We then
prepare the data from raw recordings following closely the protocol from the fMRI example

179

(a) Lasso path (b) IRKSN path

(c) ElasticNet path

Figure 4.7: Comparison of the path of IRKSN with Lasso and Elasticnet.

from the package hidimstat2, choosing the neural recordings of a specific subject (subject
number 2), as they do. Once we obtain the data matrix X and target yδ, we use the
algorithms from Table 4.1 to estimate the true model w∗, which is an estimate of the brain
functional region associated with the true (noiseless) response variable y. Such dataset
contains 216 samples, of dimensionality 39912. We split the dataset into a training set and
a validation set, with the ratio 80%-20%: since we consider only the support reconstruction
task, we indeed do not use any test-set in this case.

Hyperparameters and Algorithms Tuning. Below we give more details on the tuning
of each algorithm. Once the dataset is prepared, we fine tune the algorithms hyperparameters
on mean squared error prediction on the validation set. The intercept of the models is
fitted separately, using the same method as in section 4.8.4.4. Additionally, we preprocess
first the data by removing features of variance 0 and centering and standardizing X, as
described in section 4.8.4.4. Additionally, since such dataset of neural images is high
dimensional, to reduce the computational cost we use sensible values for hyperparameters
whenever those are possible: for instance, for algorithms that have convergence guarantees
if the learning rate is equal to the inverse of the Lipschitz-smoothness constant (which
in our case is the squared nuclear norm of X (denoted ∥X∥2)), we set the learning rate

2https://ja-che.github.io/hidimstat/auto_examples/plot_fmri_data_example.html

180

https://ja-che.github.io/hidimstat/auto_examples/plot_fmri_data_example.html

denoted by η to such value. Also, for all algorithms which require setting a sparsity level
k (IRKSN, IHT, KSN, OMP), we set k = 150, which is an estimate that we considered
known a priori for the size of the function region we wish to reconstruct. Additionally,
we run all algorithms with a maximum number of iterations of 10,000. For IHT, we set
η = 1

∥X∥2 . For Lasso, we use the implementation lasso_path from scikit-learn [122],
with its default parameters, which automatically choses the path of λ based on a data
criterion. For ElasticNet, we use the implementation enet_path from scikit-learn [122],
which similarly as above, automatically chooses the path of λ based on a data criterion.
In addition, we choose the recommended values {.1, .5, .7, .9, .95, .99, 1} of ElasticNetCV
for the relative weight of the ℓ1 penalty. For KSN penalty, we choose the strenght of
the k-support norm penalty λ in {0.1, 1.}, and set η = 1

∥X∥2 . For SRDI, we search for
the parameters κ and α from [118], respectively in {0.001, 0.01, 0.1} and {0.001, 0.01, 0.1}.
For IROSR, we search for the parameters η and α respectively in {0.001, 0.01, 0.1} and
{0.001, 0.01, 0.1}. For IRCR, we set τ and σ to 0.9√

2∥X∥2
(in order to verify the condition of

equation (6) in [105]). For IRKSN (ours), we set α (from Algorithm 10) to 0.001, since as
recommended by Theorem 10, a smaller value of α has more chance to verify the conditions
for convergence of 10, (assuming X verifies Assumptions 12 and 13). Additionally, a smaller
α ensures that the sparsity of the iterates is closer to k sparse. Our results are produced on
a server of CPUs with 16 cores the experiment takes a few hours to run.

Post Processing. Once the estimated model w is returned by each method, we post
process w as in [40] Section 3.2: we first compute the corresponding corrected p-values
obtained when assumed that the weights values are sampled from a Gaussian distribution
(see [40] for more details). Then, we transform those as z-value maps instead of p values
maps, and set the FWER (Family-Wise Error Rate) threshold for detection to 0.1 as is done
in [40], which is translated into a corresponding threshold for z-values using the Bonferroni
correction. We refer the reader to [40] for more details on such post-processing and the
related terminology. We then plot in Figure 4.8 the estimated functional region for all of
the methods.

4.8.3.2 Results

Visual Comparison On Reconstruction. We plot the fMRI reconstruction results
of each method on Figure 4.8, in the case where class1 correspond to the class ’face’ and
class2 corresponds to the class ’house’. As a comparison, we also have plotted in Figure
4.8(j) the result of the EnCluDL algorithm from [40] in the same setting, and which may be
considered as a ground truth: such method indeed uses knowledge of the spatial structure of
the voxel grid (i.e., which voxel is close to each voxel, therefore more likely to be correlated
with it), contrary to the methods considered in our paper which are blind to such structure.
As we can see, methods based on an implicit or explicit ℓ1 norm regularization perform
poorly, since they tend to estimate a support that is too small: indeed, methods such as the
Lasso are known to fail to select group of correlated column, and tend to select only a few
explicative features [165]. On the contrary, k-support norm regularization like IRKSN is

181

able to estimate a support of larger size, which by inspection seems to be a better estimate
of the ground truth. Additionally, we can observe that even ElasticNet, which supposedly
should also be able to perform reasonably well in presence of correlated features [165], does
not seem to recover the true functional region: indeed, although its ℓ1 and ℓ2 penalties are
tuned by grid-search on a validation set, it is more difficult for such method to fix a specific
sparsity k. On the other hand, methods which fix a specific k (IHT, KSN, IRKSN, OMP)
are advantaged. We can also notice that the solutions of IHT and IRKSN are almost the
same, and appear to be the most successful reconstruction of the active functional brain
region.

Quantitative Results. Finally, we also provide extra quantitative results in Table 4.2
below for the face/house and house/shoe data splits, in terms of ∥w −w∗∥, where for the
ground truth w∗ we take the weight vector obtained by running the EnCluDL method. Note
that IHT also has a good performance, but, unlike IRKSN, the theory of sparse recovery
for IHT fails to explain such success since (see, e.g. [76]) the RIP property is typically not
verified for correlated data (like fMRI [16]):

Lasso ElasticNet OMP IHT KSN IRKSN IRCR IROSR SRDI

face’/’house’ .425 .349 .938 .2441 .247 .2440 .341 .381 .314
’house’/’shoe’ .528 .500 .938 .2968 .299 .2965 .407 .502 .357

Table 4.2: Comparison of the algorithms on model estimation ∥w−w∗∥ (w∗: weight vector
obtained by running the EnCluDL method).

4.8.3.3 Interpretation

Such an fMRI dataset is a real-life (non-synthetic) dataset, therefore its true data generating
process is unknown. However, we provide here some attempt to explain the success of
k-support norm regularization on such fMRI reconstruction task, in the light of our newly
derived sufficient conditions for recovery derived in the paper. More precisely, we present
below a data generating process that we believe might potentially be similar to the true
underlying data generating process of fMRI observations, and which we will show actually
verifies our Assumptions 12 and 13 for recovery with IRKSN.

Example 2: Simplistic fMRI Generating Process. For each observation i, xi

represents the observed activated voxels from the fMRI, so we may consider that they
consist in (i) the functional region related to the noiseless target y (i.e. in this case for
instance, say, the visual cortex functional region), and (ii) some unrelated regions that are
activated for some other reasons (e.g. the functional region responsible for movement if the
subject is moving).

Therefore, we model each observation xi (i.e. row of X, seen as a column vector) as
follows:

182

(a) Lasso (b) ElasticNet

(c) OMP (d) SRDI

(e) IROSR (f) IHT

(g) IRCR (h) KSN

(i) IRKSN (j) EnCluDL

Figure 4.8: Comparison of different methods on an fMRI decoding task. Figure 4.8(j) is the
EnCluDL method from [40] which uses the additional knowledge of the spatial structure of
the voxels, and may be considered as some ground truth for the functional region to be
reconstructed.

183

xi = yiw
∗ + γi (4.67)

Where w∗ is the true model, which support S = supp(w∗) is the true functional region
we wish to reconstruct, yi is considered to be both the noiseless target variable, but also the
variable modulating the functional region: for instance, if yi denotes the presence or absence
of an image in front of the subject, the functional region for visual stimuli will be more or
less active depending on yi, and where γi is a variable which we consider to have a support
disjoint from supp(w∗), which denotes all the other unrelated functional region that are
active at observation i (e.g. as discussed above, which can be nonzero if the functional
region responsible for, say, movement, or some other regions, are active at the time of
measurement i). Let us also assume that the random variable associated with samples
γi are independent of the random variable associated with samples yi (this corresponds
to saying that, say, the event of moving (or any brain activation event unrelated to the
activation coming from the presentation of the image), is independent of the event of being
presented a certain image). Additionally, let us assume that ∥w∗∥ = 1.

Since γi and w∗ are assumed to have disjoint support, we can therefore verify that, for
all samples i:

⟨xi,w
∗⟩ = yi∥w∗∥2 + 0 = yi (4.68)

Therefore, w∗ is indeed a solution of the system Xw∗ = y

Also, we can write X as: X = yw∗⊤ + Γ, where each row i of Γ, seen as a column
vector, is γi, and based on the assumption above that every γi has a support disjoint from
supp(w∗), we have:

XS = yw∗
S
⊤ =

y

∥y∥∥y∥w
∗
S
⊤ (4.69)

Where we can recognize on the right hand side above the SVD of XS, from which we
can deduce that:

X†
S = w∗

S

1

∥y∥
y⊤

∥y∥ (4.70)

Which implies

X†
Sy =

1

∥y∥2w
∗
Sy

⊤y = w∗
S (4.71)

And therefore, w∗
S is indeed here the minimum ℓ2 norm solution of the linear system

XSw
∗
S = y, since by property of the pseudo-inverse, such minimal ℓ2 norm solution is X†

Sy.
Combined with equation 4.68, we obtain that X, y and w verify Assumption 12. Now let
us consider some ℓ ∈ S:

X†
Sxℓ =

1

∥y∥2w
∗
Sy

⊤(ywℓ) = wℓw
∗
S (4.72)

184

And therefore
min
ℓ∈S
|⟨X†

Sxℓ,w
∗
S⟩| = ∥w∗

S∥2min
ℓ∈S
|wℓ| > 0 (4.73)

Where the last inequality is strictly positive, and much greater than 0 if the smallest nonzero
value of w∗ is big enough (in absolute value). Additionally, on the other hand, if ℓ ∈ S̄,
since we assumed that Γ is composed of variables independent of y, and assuming that y
and Γℓ have zero mean for every ℓ, we obtain that for large enough sample size, y⊤Γℓ ≈ 0,
and therefore we have: X†

Sxℓ =
1

∥y∥2w
∗
Sy

⊤Γℓ ≈ 0, and therefore,

⟨X†
Sxℓ,w

∗
S⟩ ≈ 0 (4.74)

Which therefore implies that :

max
ℓ∈S̄
|⟨X†

Sxℓ,w
∗
S⟩| ≈ 0 < min

ℓ∈S
|⟨X†

Sxℓ,w
∗
S⟩| (4.75)

Which is our Assumption 13, and therefore, X, w∗ and y verify both Assumptions 12
and 13 which are sufficient conditions for recovery with IRKSN. Also note that however the
matrix XS is not injective here therefore the sufficient Assumption 14 for recovery with ℓ1
norm is not verified. Therefore, this might potentially explain the success of the k-support
norm as a regularizer in fMRI tasks, contrary to ℓ1 norm based recovery methods which
experimentally appear to produce worse results.

Finally, we emphasize that this is only a naive modeling of the true fMRI data, but
we believe that it may be useful to understand the success of k-support norm on such
particular tasks. It also gives more intuition on our conditions for recovery, and on which
kind of tasks k-support norm may be a useful regularizer to consider.

4.8.4 Prediction on Real Data

In this section, we run some experiments on real-life datasets to illustrate the applicability
of IRKSN on prediction problems, for various datasets. Although sparse recovery is the
primary goal of our paper, and is a goal distinct from prediction, we still find interesting
to analyze the performance of IRKSN on predictions tasks, since those also often arise in
practice.

4.8.4.1 Setting

As before, we consider the problem of sparse linear regression, where our goal is to minimize
the expected mean squared error (MSE) loss of prediction EX,Y (Y − Ŷ)2, where Y is the
true regressed target, and Ŷ is the predicted target, predicted linearly from the regressors
X:

Ŷ = ⟨ŵ, X⟩+ b =
d∑

i=1

ŵiXi + b (4.76)

185

(where b is the intercept, fitted separately (see Section 4.8.4.4 for more details)), and where
ŵ is a sparse model that we seek to estimate from a training set of n observations of X and
Y . For each run, we first randomly split the data into a training set, and a test set which
contains 25% of the data. Then, we split the training set into an actual training set and a
validation set, with the same proportion (75%/25%). Hyperparameters, including learning
rate parameters and early stopping time are fitted to minimize the MSE on the validation
set. Then the empirical MSE on the test set is reported. This procedure is repeated 10
times, and we report in Tables 4.4 and 4.5 the mean and standard deviation of that test set
MSE.

Additional details including details on the intercept and a preprocessing step, as well as
the values for the grid-search of each algorithm are described in Section 4.8.4.4. Our results
are produced on a server of CPUs with 32 cores and 126G RAM, and take 5 hours to run.

4.8.4.2 Datasets

We evaluate the algorithms on the following open source datasets (obtained from the sources
LibSVM [35] and OpenML [144]), of which a brief summary is presented in Table 4.3.

Dataset d n

leukemia(1) 7129 38
housing (2) 8 20640
scheetz2006(3) 18975 120
rhee2006(4) 361 842

Table 4.3: Datasets used in the comparison. References: (1): [63], (2) [119], (3): [131], (4): [126].
Sources: (1): [35], (2) [82] downloaded with scikit-learn [122], (3,4): [25] .

4.8.4.3 Results

We present our results in Tables 4.4 and 4.5. Generally, we observe that for datasets with a
large d (such as leukemia and scheetz2006), ℓ1 based methods such as Lasso, IRCR, or
SRDI achieve poorer performance: indeed, the Lasso is known to saturate when d > n [165],
i.e. its predicted w∗ cannot contain more than n nonzero variables. This is not the case for
the ElasticNet and k-support norm based algorithms like IRKSN, which is why those latter
algorithms achieve a good score in this d > n setting.

Perhaps surprisingly, IROSR also achieves a good score on scheetz2006 (d >> n),
even if its reparameterization is supposed to enforce some ℓ1 regularization [145]. However,
the theory in [145] holds for small initializations and specific stepsizes, so we hypothesize
that due to our grid search on the stepsize, our version of IRCR might be able to explore
regimes beyond the ℓ1 norm, beyond the scope of the theory in the IRCR paper. Our
results also confirm the findings from [3], namely that the k-support norm regularization

186

often outperforms the ElasticNet: this is also true for iterative regularizations using the
k-support norm (namely, IRKSN).

Method leukemia housing

IHT 0.322± 0.137 0.535± 0.011
Lasso 0.450± 0.204 0.535± 0.016
ElasticNet 0.307± 0.154 0.540± 0.031
KSN pen. 0.251 ± 0.090 0.533± 0.009
OMP 0.730± 0.376 0.533± 0.009
SRDI 0.396± 0.220 0.533± 0.009
IROSR 0.352± 0.121 0.655± 0.013
IRCR 0.326± 0.102 0.534± 0.010
IRKSN (ours) 0.264± 0.091 0.538± 0.012

Table 4.4: Test MSE of the methods of Table 4.1 on the leukemia and housing datasets
(bold font: mean within the standard deviation of the best score from each column).

Method scheetz2006 rhee2006

IHT 0.008± 0.003 0.576± 0.053
Lasso 0.012± 0.008 0.557± 0.049
ElasticNet 0.009± 0.004 0.541± 0.042
KSN pen. 0.008± 0.003 0.556± 0.035
OMP 0.016± 0.06 0.684± 0.057
SRDI 0.018± 0.013 0.567± 0.043
IROSR 0.007± 0.003 0.583± 0.044
IRCR 0.018± 0.013 1.389± 0.105
IRKSN (ours) 0.008± 0.003 0.578± 0.038

Table 4.5: Test MSE of the methods of Table 4.1 on gene array datasets (scheetz2006 and
rhee2006).

4.8.4.4 Details on the Implementation of Algorithms

In this section, we present additional details on the experiments from Section 4.8.4. First,
for all the algorithms, we added a preprocessing step that centers and standardizes each
column on the trainset (i.e. substract its mean and divides it by its standard deviation),
and that removes columns that have 0 variance (i.e. column containing the same, replicated
value). We later use this learned transformation on the validation set and the test set.
In addition, we fit the intercept b of the linear regression separately, as is common in
sparse linear regression, by centering the target y before training, and then using the below
formula for the intercept:

b = ȳ − ⟨X̄, ŵ⟩ (4.77)

187

Where ȳ is the average of the target vector y, ŵ is the final estimated model on the train set
(fitted with a centered target y− ȳ), and X̄ is the column-wise average of the (preprocessed)
training data matrix X. The prediction of a new preprocessed data sample x′

i is then
ŷi := ⟨ŵ,x′

i⟩+ b.

We recode most algorithms from scratch in numpy [70], except for the Lasso, ElasticNet,
and OMP, for which we use the scikit-learn [122] implementation. For the implementation
of the proximal operator of the (half-squared) k-support norm (used in IRKSN and KSN
penalized), we use the existing implementation from the modopt package [54], that is based
on the efficient algorithm described in [102]. Below we present the grid-search parameters
for each algorithms, that allowed them to achieve a good performance consistently on all
datasets from Table 4.3. For all iterative regularization algorithms (i.e. SRDI, IROSR, IRCR,
and IRKSN), we monitor the validation MSE every 5 iterations, and choose the stopping
time as the iteration number with the best MSE. We also proceed as such for IHT, since
because we grid-search the learning rate, if that latter is too high, decrease of the function at
each step may not be guaranteed. We run each iterative algorithm that we reimplemented
(IHT, KSN penalty, SRDI, IROSR, IRCR, IRKSN) with a maximum number of iterations of
500. Finally, we release our code at https://github.com/wdevazelhes/IRKSN_AAAI2024.

IHT [20] We search k (the number of components kept at each iterations) in an
evenly spaced interval from 1 to d containing 5 values, and search the learning rate η
in {0.0001, 0.001, 0.01, 0.1, 1.}.

Lasso [139] We use the implementation lasso_path from scikit-learn [122], with its
default parameters, which automatically choses the path of λ based on a data criterion.

ElasticNet [165] We use the implementation enet_path from scikit-learn [122], which
similarly as above, automatically chooses the path of λ based on a data criterion. In
addition, we choose the recommended values {.1, .5, .7, .9, .95, .99, 1} of ElasticNetCV for
the relative weight of the ℓ1 penalty.

KSN penalty [3] We choose the strenght of the k-support norm penalty λ in {0.1, 1.},
the k (from the k-support norm) in an evenly spaced interval from 1 to d containing 5
values, and we found that simply setting the constant L from [3] (which is the inverse of
the learning rate) to 1e6 achieves consistently good results across all datasets.

OMP [141] We use the implementation from scikit-learn [122], and we search k in an
evenly spaced interval from 1 to min(n, d) (indeed, OMP needs k not to be bigger than
min(n, d)) containing 5 values.

SRDI [118] We search for the parameters κ and α from [118], respectively in the intervals
{0.0001, 0.001, 0.01, 0.1, 1.} and {0.0001, 0.001, 0.01, 0.1, 1.}.

188

https://github.com/wdevazelhes/IRKSN_AAAI2024

IROSR [145] We search for the parameters η and α respectively in
{0.0001, 0.001, 0.01, 0.1, 1.} and {0.0001, 0.001, 0.01, 0.1, 1.}.

IRCR [105] For IRSR, we found that setting τ and σ to 0.9√
2∥X∥2

(in order to verify the

condition of equation (6) in [105]) consistently performs well on all datasets.

IRKSN (ours) For IRKSN, we search α (from Algorithm 10) in
{0.0001, 0.001, 0.01, 0.1, 1, 10}, and k (from the k-suppo rt norm), in an evenly
spaced interval from 1 to d containing 5 values. For the RHEE2006 dataset, we found that
the hyperparameters need to be tuned slighty more to attain comparable performance with
other algorithms: the reported performance is for α = 0.6, k = 33, ran for 1,000 iterations.

4.9 Conclusion

In this paper, we introduced an iterative regularization method based on the k-support
norm regularization, IRKSN, to complement usual methods based on the ℓ1 norm. In
particular, we gave some condition for sparse recovery with our method, that we analyzed
in details and compared to traditional conditions for recovery with ℓ1 norm regularizers,
through an illustrative example. We then gave an early stopping bound for sparse recovery
with IRKSN with explicit constants in terms of the design matrix and the true sparse vector.
Finally, we evaluated the applicability of IRKSN on several experiments. In future works,
it would be interesting to analyze recovery with the s-support norm for general s, where s
is not necessarily equal to k: indeed, this setting would generalize both our work and works
based on the ℓ1 norm. We leave this for future work.

189

References

[1] Alexandre Abraham, Fabian Pedregosa, Michael Eickenberg, Philippe Gervais, An-
dreas Mueller, Jean Kossaifi, Alexandre Gramfort, Bertrand Thirion, and Gaël
Varoquaux. Machine learning for neuroimaging with scikit-learn. Frontiers in neu-
roinformatics, 8:14, 2014.

[2] George B Arfken and Hans J Weber. Mathematical methods for physicists. American
Association of Physics Teachers, 1999.

[3] Andreas Argyriou, Rina Foygel, and Nathan Srebro. Sparse prediction with the
k-support norm. Advances in Neural Information Processing Systems, 25, 2012.

[4] Hedy Attouch, Jérôme Bolte, and Benar Fux Svaiter. Convergence of descent methods
for semi-algebraic and tame problems: Proximal algorithms, forward–backward
splitting, and regularized gauss–seidel methods. Mathematical Programming, 137:91–
129, 2013.

[5] Kyriakos Axiotis and Maxim Sviridenko. Sparse convex optimization via adaptively
regularized hard thresholding. The Journal of Machine Learning Research, 22(1):5421–
5467, 2021.

[6] Kyriakos Axiotis and Maxim Sviridenko. Iterative hard thresholding with adap-
tive regularization: Sparser solutions without sacrificing runtime. In International
Conference on Machine Learning, pages 1175–1197. PMLR, 2022.

[7] Krishnakumar Balasubramanian and Saeed Ghadimi. Zeroth-order (non)-convex
stochastic optimization via conditional gradient and gradient updates. In Advances
in Neural Information Processing Systems, volume 31, 2018.

[8] J Baptiste, H Urruty, and C Lemarechal. Fundamentals of convex analysis, 2001.

[9] Rina Foygel Barber and Wooseok Ha. Gradient descent with non-convex constraints:
local concavity determines convergence. Information and Inference: A Journal of the
IMA, 7:755–806, 2018.

[10] Heinz H Bauschke, Patrick L Combettes, et al. Convex analysis and monotone
operator theory in Hilbert spaces, volume 408. Springer, 2011.

190

[11] Atılım Güneş Baydin, Barak A Pearlmutter, Don Syme, Frank Wood, and Philip
Torr. Gradients without backpropagation. arXiv preprint arXiv:2202.08587, 2022.

[12] John E Beasley. Or-library: distributing test problems by electronic mail. Journal of
the operational research society, 41(11):1069–1072, 1990.

[13] Amir Beck. First-order methods in optimization. SIAM, 2017.

[14] Amir Beck and Nadav Hallak. On the minimization over sparse symmetric sets:
Projections, optimality conditions, and algorithms. Mathematics of Operations
Research, 41:196–223, 2016.

[15] Amir Beck and Marc Teboulle. Smoothing and first order methods: A unified
framework. SIAM Journal on Optimization, 22(2):557–580, 2012.

[16] Eugene Belilovsky, Katerina Gkirtzou, Michail Misyrlis, Anna B Konova, Jean Honorio,
Nelly Alia-Klein, Rita Z Goldstein, Dimitris Samaras, and Matthew B Blaschko.
Predictive sparse modeling of fmri data for improved classification, regression, and
visualization using the k-support norm. Computerized Medical Imaging and Graphics,
46:40–46, 2015.

[17] Adi Ben-Israel and Thomas NE Greville. Generalized inverses: theory and applications,
volume 15. Springer Science & Business Media, 2003.

[18] Albert S Berahas, Liyuan Cao, Krzysztof Choromanski, and Katya Scheinberg. A
theoretical and empirical comparison of gradient approximations in derivative-free
optimization. Foundations of Computational Mathematics, pages 1–54, 2021.

[19] Quentin Bertrand and Mathurin Massias. Anderson acceleration of coordinate descent.
In International Conference on Artificial Intelligence and Statistics, pages 1288–1296.
PMLR, 2021.

[20] Thomas Blumensath and Mike E Davies. Iterative hard thresholding for compressed
sensing. Applied and computational harmonic analysis, 27(3):265–274, 2009.

[21] Dankmar Böhning. Multinomial logistic regression algorithm. Annals of the Institute
of Statistical Mathematics, 44:197–200, 1992.

[22] Jérôme Bolte, Shoham Sabach, and Marc Teboulle. Proximal alternating linearized
minimization for nonconvex and nonsmooth problems. Mathematical Programming,
146:459–494, 2014.

[23] Radu Ioan Boţ, Ernö Robert Csetnek, and Szilárd Csaba László. An inertial forward–
backward algorithm for the minimization of the sum of two nonconvex functions.
EURO Journal on Computational Optimization, 4:3–25, 2016.

[24] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization.
Cambridge university press, 2004.

191

[25] Patrick Breheny, 2022.

[26] Joshua Brodie, Ingrid Daubechies, Christine De Mol, Domenico Giannone, and Ignace
Loris. Sparse and stable markowitz portfolios. Proceedings of the National Academy
of Sciences, 106:12267–12272, 2009.

[27] Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations
and Trends® in Machine Learning, 8(3-4):231–357, 2015.

[28] Peter Bühlmann and Sara Van De Geer. Statistics for high-dimensional data: methods,
theory and applications. Springer Science & Business Media, 2011.

[29] Leon Bungert, Tim Roith, Daniel Tenbrinck, and Martin Burger. A bregman learn-
ing framework for sparse neural networks. Journal of Machine Learning Research,
23(192):1–43, 2022.

[30] HanQin Cai, Yuchen Lou, Daniel McKenzie, and Wotao Yin. A zeroth-order block
coordinate descent algorithm for huge-scale black-box optimization. In International
Conference on Machine Learning, pages 1193–1203. PMLR, 2021.

[31] HanQin Cai, Daniel McKenzie, Wotao Yin, and Zhenliang Zhang. Zeroth-order regu-
larized optimization (zoro): Approximately sparse gradients and adaptive sampling.
SIAM Journal on Optimization, 32(2):687–714, 2022.

[32] Jian-Feng Cai, Stanley Osher, and Zuowei Shen. Linearized bregman iterations for
compressed sensing. Mathematics of computation, 78(267):1515–1536, 2009.

[33] Emmanuel J Candes and Terence Tao. Decoding by linear programming. IEEE
transactions on information theory, 51(12):4203–4215, 2005.

[34] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural
networks. In 2017 ieee symposium on security and privacy (sp), pages 39–57. Ieee,
2017.

[35] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[36] T-J Chang, Nigel Meade, John E Beasley, and Yazid M Sharaiha. Heuristics for
cardinality constrained portfolio optimisation. Computers & Operations Research,
27(13):1271–1302, 2000.

[37] Soumyadeep Chatterjee, Sheng Chen, and Arindam Banerjee. Generalized dantzig se-
lector: Application to the k-support norm. Advances in Neural Information Processing
Systems, 27, 2014.

[38] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth
order optimization based black-box attacks to deep neural networks without training
substitute models. In Proceedings of the 10th ACM workshop on artificial intelligence
and security, pages 15–26, 2017.

192

http://www.csie.ntu.edu.tw/~cjlin/libsvm

[39] Xiangyi Chen, Sijia Liu, Kaidi Xu, Xingguo Li, Xue Lin, Mingyi Hong, and David Cox.
Zo-adamm: Zeroth-order adaptive momentum method for black-box optimization. In
Advances in Neural Information Processing Systems, volume 32, 2019.

[40] Jérôme-Alexis Chevalier, Tuan-Binh Nguyen, Joseph Salmon, Gaël Varoquaux, and
Bertrand Thirion. Decoding with confidence: Statistical control on decoder maps.
NeuroImage, 234:117921, 2021.

[41] Krzysztof Choromanski, Aldo Pacchiano, Jack Parker-Holder, Yunhao Tang, Deepali
Jain, Yuxiang Yang, Atil Iscen, Jasmine Hsu, and Vikas Sindhwani. Provably robust
blackbox optimization for reinforcement learning. In Conference on Robot Learning,
pages 683–696. PMLR, 2020.

[42] Saeed Damadi and Jinglai Shen. Gradient properties of hard thresholding operator.
arXiv preprint arXiv:2209.08247, 2022.

[43] Alberto De Marchi and Andreas Themelis. An interior proximal gradient method for
nonconvex optimization. arXiv preprint arXiv:2208.00799, 2022.

[44] William de Vazelhes, Bhaskar Mukhoty, Xiao-Tong Yuan, and Bin Gu. Iterative
regularization with k-support norm: an important complement to sparse recovery.
arXiv preprint arXiv:2401.05394, 2023.

[45] William de Vazelhes, Xiaotong Yuan, and Bin Gu. Optimization over sparse restricted
convex sets via two steps projection, 2024.

[46] William de Vazelhes, Hualin Zhang, Huimin Wu, Xiaotong Yuan, and Bin Gu.
Zeroth-order hard-thresholding: Gradient error vs. expansivity. Advances in Neural
Information Processing Systems, 35:22589–22601, 2022.

[47] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental
gradient method with support for non-strongly convex composite objectives. Advances
in neural information processing systems, 27, 2014.

[48] Tristan Deleu and Yoshua Bengio. Structured sparsity inducing adaptive optimizers
for deep learning. arXiv preprint arXiv:2102.03869, 2021.

[49] Victor DeMiguel, Lorenzo Garlappi, Francisco J Nogales, and Raman Uppal. A gen-
eralized approach to portfolio optimization: Improving performance by constraining
portfolio norms. Management Science, 55:798–812, 2009.

[50] SM Moosavi Dezfooli, F Alhussein, F Omar, F Pascal, and S Stefano. Analysis of
universal adversarial perturbations. arXiv preprint arXiv:1705.09554, 2017.

[51] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[52] Yuri M Ermoliev and Vladimir Ivanovich Norkin. On nonsmooth problems of stochastic
systems optimization. 1995.

193

[53] Huang Fang, Zhenan Fan, Yifan Sun, and Michael Friedlander. Greed meets sparsity:
Understanding and improving greedy coordinate descent for sparse optimization.
In International Conference on Artificial Intelligence and Statistics, pages 434–444.
PMLR, 2020.

[54] Samuel Farrens, Antoine Grigis, Loubna El Gueddari, Zaccharie Ramzi, GR Chaithya,
S Starck, B Sarthou, Hamza Cherkaoui, Philippe Ciuciu, and J-L Starck. Pysap:
Python sparse data analysis package for multidisciplinary image processing. Astronomy
and Computing, 32:100402, 2020.

[55] Simon Foucart and Holger Rauhut. An invitation to compressive sensing. In A
mathematical introduction to compressive sensing, pages 1–39. Springer, 2013.

[56] Pierre Frankel, Guillaume Garrigos, and Juan Peypouquet. Splitting methods with
variable metric for kurdyka–łojasiewicz functions and general convergence rates.
Journal of Optimization Theory and Applications, 165:874–900, sep 2014.

[57] Xiang Gao, Bo Jiang, and Shuzhong Zhang. On the information-adaptive variants
of the admm: an iteration complexity perspective. Journal of Scientific Computing,
76(1):327–363, 2018.

[58] Dan Garber and Elad Hazan. Faster rates for the frank-wolfe method over strongly-
convex sets. In International Conference on Machine Learning, pages 541–549. PMLR,
2015.

[59] Saeed Ghadimi, Guanghui Lan, and Hongchao Zhang. Mini-batch stochastic approx-
imation methods for nonconvex stochastic composite optimization. Mathematical
Programming, 155(1):267–305, 2016.

[60] Katerina Gkirtzou, Jean Honorio, Dimitris Samaras, Rita Goldstein, and Matthew B
Blaschko. fmri analysis of cocaine addiction using k-support sparsity. In 2013 IEEE
10th International Symposium on Biomedical Imaging, pages 1078–1081. IEEE, 2013.

[61] Daniel Golovin, John Karro, Greg Kochanski, Chansoo Lee, Xingyou Song, and
Qiuyi Zhang. Gradientless descent: High-dimensional zeroth-order optimization. In
International Conference on Learning Representations, 2019.

[62] Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

[63] Todd R Golub, Donna K Slonim, Pablo Tamayo, Christine Huard, Michelle Gaasen-
beek, Jill P Mesirov, Hilary Coller, Mignon L Loh, James R Downing, Mark A
Caligiuri, et al. Molecular classification of cancer: class discovery and class prediction
by gene expression monitoring. science, 286(5439):531–537, 1999.

[64] Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin,
and Peter Richtárik. SGD: General analysis and improved rates. In Proceedings of
the 36th International Conference on Machine Learning, volume 97, pages 5200–5209.
PMLR, 2019.

194

[65] Markus Grasmair, Otmar Scherzer, and Markus Haltmeier. Necessary and sufficient
conditions for linear convergence of ℓ1-regularization. Communications on Pure and
Applied Mathematics, 64(2):161–182, 2011.

[66] Cristiano Gratton, Naveen KD Venkategowda, Reza Arablouei, and Stefan Werner.
Privacy-preserved distributed learning with zeroth-order optimization. IEEE Trans-
actions on Information Forensics and Security, 17:265–279, 2021.

[67] Bin Gu, De Wang, Zhouyuan Huo, and Heng Huang. Inexact proximal gradient
methods for non-convex and non-smooth optimization. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32, 2018.

[68] Bin Gu, Wenhan Xian, Zhouyuan Huo, Cheng Deng, and Heng Huang. A unified
q-memorization framework for asynchronous stochastic optimization. The Journal of
Machine Learning Research, 21(1):7761–7813, 2020.

[69] Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing
implicit bias in terms of optimization geometry. In International Conference on
Machine Learning, pages 1832–1841. PMLR, 2018.

[70] Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gommers, Pauli
Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J
Smith, et al. Array programming with numpy. Nature, 585(7825):357–362, 2020.

[71] James V Haxby, M Ida Gobbini, Maura L Furey, Alumit Ishai, Jennifer L Schouten,
and Pietro Pietrini. Distributed and overlapping representations of faces and objects
in ventral temporal cortex. Science, 293(5539):2425–2430, 2001.

[72] T. Hofmann, A. Lucchi, S. Lacoste-Julien, and B. Mcwilliams. Variance reduced
stochastic gradient descent with neighbors. Mathematics, 2015.

[73] Patrik O Hoyer. Non-negative sparse coding. In Proceedings of the 12th IEEE
workshop on neural networks for signal processing, pages 557–565. IEEE, 2002.

[74] Feihu Huang, Bin Gu, Zhouyuan Huo, Songcan Chen, and Heng Huang. Faster
gradient-free proximal stochastic methods for nonconvex nonsmooth optimization.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
1503–1510, 2019.

[75] Laurent Jacob, Guillaume Obozinski, and Jean-Philippe Vert. Group lasso with
overlap and graph lasso. In Proceedings of the 26th annual international conference
on machine learning, pages 433–440, 2009.

[76] Prateek Jain, Ambuj Tewari, and Purushottam Kar. On iterative hard thresholding
methods for high-dimensional m-estimation. In Advances in Neural Information
Processing Systems, volume 27, 2014.

195

[77] Kevin G Jamieson, Robert Nowak, and Ben Recht. Query complexity of derivative-free
optimization. In Advances in Neural Information Processing Systems, volume 25,
2012.

[78] Jinzhu Jia and Bin Yu. On model selection consistency of the elastic net when p » n.
Statistica Sinica, pages 595–611, 2010.

[79] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive
variance reduction. Advances in neural information processing systems, 26, 2013.

[80] Anatoli Juditsky, Joon Kwon, and Éric Moulines. Unifying mirror descent and dual
averaging. Mathematical Programming, pages 1–38, 2022.

[81] Sham Kakade, Shai Shalev-Shwartz, Ambuj Tewari, et al. On the duality of strong
convexity and strong smoothness: Learning applications and matrix regularization.

[82] Charles Kooperberg. Statlib: an archive for statistical software, datasets, and
information. The American Statistician, 51(1):98, 1997.

[83] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from
tiny images. 2009.

[84] Anastasios Kyrillidis, Stephen Becker, Volkan Cevher, and Christoph Koch. Sparse
projections onto the simplex. In International Conference on Machine Learning, pages
235–243, 2013.

[85] Ken Lang. Newsweeder: Learning to filter netnews. In Machine Learning Proceedings
1995, pages 331–339. Elsevier, 1995.

[86] Evgeny S Levitin and Boris T Polyak. Constrained minimization methods. USSR
Computational mathematics and mathematical physics, 6(5):1–50, 1966.

[87] Huan Li and Zhouchen Lin. Accelerated proximal gradient methods for nonconvex
programming. Advances in Neural Information Processing Systems, 28, 2015.

[88] Xingguo Li, Raman Arora, Han Liu, Jarvis Haupt, and Tuo Zhao. Nonconvex
sparse learning via stochastic optimization with progressive variance reduction. arXiv
preprint arXiv:1605.02711, 2016.

[89] Xiangru Lian, Huan Zhang, Cho-Jui Hsieh, Yijun Huang, and Ji Liu. A comprehensive
linear speedup analysis for asynchronous stochastic parallel optimization from zeroth-
order to first-order. Advances in Neural Information Processing Systems, 29, 2016.

[90] Haoyang Liu and Rina Foygel Barber. Between hard and soft thresholding: optimal
iterative thresholding algorithms. Information and Inference: A Journal of the IMA,
9(4):899–933, 2020.

[91] Hongcheng Liu and Yu Yang. A dimension-insensitive algorithm for stochastic
zeroth-order optimization. arXiv preprint arXiv:2104.11283, 2021.

196

[92] Sijia Liu, Jie Chen, Pin-Yu Chen, and Alfred Hero. Zeroth-order online alternating
direction method of multipliers: Convergence analysis and applications. In Inter-
national Conference on Artificial Intelligence and Statistics, pages 288–297. PMLR,
2018.

[93] Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan Zhang, Alfred O Hero III, and
Pramod K Varshney. A primer on zeroth-order optimization in signal processing
and machine learning: Principals, recent advances, and applications. IEEE Signal
Processing Magazine, 37(5):43–54, 2020.

[94] Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan Zhang, Alfred O Hero III, and
Pramod K Varshney. A primer on zeroth-order optimization in signal processing
and machine learning: Principals, recent advances, and applications. IEEE Signal
Processing Magazine, 37(5):43–54, 2020.

[95] Sijia Liu, Bhavya Kailkhura, Pin-Yu Chen, Paishun Ting, Shiyu Chang, and Lisa
Amini. Zeroth-order stochastic variance reduction for nonconvex optimization. In
Advances in Neural Information Processing Systems, volume 31, 2018.

[96] Po-Ling Loh and Martin J Wainwright. Regularized m-estimators with nonconvexity:
Statistical and algorithmic theory for local optima. Advances in Neural Information
Processing Systems, 26, 2013.

[97] Zhaosong Lu. Optimization over sparse symmetric sets via a nonmonotone projected
gradient method. arXiv preprint arXiv:1509.08581, 2015.

[98] Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search of static linear
policies is competitive for reinforcement learning. In Advances in Neural Information
Processing Systems, volume 31, 2018.

[99] Simon Matet, Lorenzo Rosasco, Silvia Villa, and Bang Long Vu. Don’t relax: early
stopping for convex regularization. arXiv preprint arXiv:1707.05422, 2017.

[100] Andrew McDonald, Massimiliano Pontil, and Dimitris Stamos. Fitting spectral decay
with the k-support norm. In Artificial Intelligence and Statistics, pages 1061–1069.
PMLR, 2016.

[101] Andrew M McDonald, Massimiliano Pontil, and Dimitris Stamos. Spectral k-support
norm regularization. Advances in neural information processing systems, 27, 2014.

[102] Andrew M McDonald, Massimiliano Pontil, and Dimitris Stamos. New perspectives on
k-support and cluster norms. The Journal of Machine Learning Research, 17(1):5376–
5413, 2016.

[103] Michael R Metel. Sparse training with lipschitz continuous loss functions and a
weighted group l0-norm constraint. Journal of Machine Learning Research, 24(103):1–
44, 2023.

197

[104] Konstantin Mishchenko, Ahmed Khaled, and Peter Richtárik. Random reshuffling:
Simple analysis with vast improvements. Advances in Neural Information Processing
Systems, 33:17309–17320, 2020.

[105] Cesare Molinari, Mathurin Massias, Lorenzo Rosasco, and Silvia Villa. Iterative regu-
larization for convex regularizers. In International conference on artificial intelligence
and statistics, pages 1684–1692. PMLR, 2021.

[106] Thomas Moreau, Mathurin Massias, Alexandre Gramfort, Pierre Ablin, Pierre-Antoine
Bannier, Benjamin Charlier, Mathieu Dagréou, Tom Dupré La Tour, Ghislain Durif,
Cassio F Dantas, et al. Benchopt: Reproducible, efficient and collaborative optimiza-
tion benchmarks. In NeurIPS-36th Conference on Neural Information Processing
Systems, volume 35, 2022.

[107] Balas Kausik Natarajan. Sparse approximate solutions to linear systems. SIAM
journal on computing, 24(2):227–234, 1995.

[108] Sahand Negahban, Bin Yu, Martin J Wainwright, and Pradeep Ravikumar. A
unified framework for high-dimensional analysis of m-estimators with decomposable
regularizers. Advances in neural information processing systems, 22, 2009.

[109] Sahand N Negahban, Pradeep Ravikumar, Martin J Wainwright, and Bin Yu. A
unified framework for high-dimensional analysis of m-estimators with decomposable
regularizers. Statistical science, 27(4):538–557, 2012.

[110] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, vol-
ume 87. Springer Science & Business Media, 2003.

[111] Yurii Nesterov. Primal-dual subgradient methods for convex problems. Mathematical
programming, 120(1):221–259, 2009.

[112] Yurii Nesterov et al. Lectures on convex optimization, volume 137. Springer, 2018.

[113] Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex
functions. Foundations of Computational Mathematics, 17:527–566, 2017.

[114] Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex
functions. Foundations of Computational Mathematics, 17(2):527–566, 2017.

[115] Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. Sarah: A novel method
for machine learning problems using stochastic recursive gradient. In International
conference on machine learning, pages 2613–2621. PMLR, 2017.

[116] Nam Nguyen, Deanna Needell, and Tina Woolf. Linear convergence of stochastic
iterative greedy algorithms with sparse constraints. IEEE Transactions on Information
Theory, 63(11):6869–6895, 2017.

[117] Ryota Nozawa, Pierre-Louis Poirion, and Akiko Takeda. Zeroth-order random subspace
algorithm for non-smooth convex optimization. arXiv preprint arXiv:2401.13944,
2024.

198

[118] Stanley Osher, Feng Ruan, Jiechao Xiong, Yuan Yao, and Wotao Yin. Sparse
recovery via differential inclusions. Applied and Computational Harmonic Analysis,
41(2):436–469, 2016.

[119] R Kelley Pace and Ronald Barry. Sparse spatial autoregressions. Statistics &
Probability Letters, 33(3):291–297, 1997.

[120] Lili Pan, Shenglong Zhou, Naihua Xiu, and Hou-Duo Qi. A convergent iterative hard
thresholding for nonnegative sparsity optimization. Pacific Journal of Optimization,
13:325–353, 2017.

[121] Neal Parikh, Stephen Boyd, et al. Proximal algorithms. Foundations and trends® in
Optimization, 1(3):127–239, 2014.

[122] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, et al. Scikit-learn: Machine learning in python. the Journal of machine
Learning research, 12:2825–2830, 2011.

[123] Roger Penrose. On best approximate solutions of linear matrix equations. In Mathe-
matical Proceedings of the Cambridge Philosophical Society, volume 52, pages 17–19.
Cambridge University Press, 1956.

[124] Alexandra Peste, Eugenia Iofinova, Adrian Vladu, and Dan Alistarh. Ac/dc: Al-
ternating compressed/decompressed training of deep neural networks. Advances in
Neural Information Processing Systems, 34:8557–8570, 2021.

[125] Garvesh Raskutti, Martin J Wainwright, and Bin Yu. Minimax rates of estimation
for high-dimensional linear regression over ℓq-balls. IEEE transactions on information
theory, 57(10):6976–6994, 2011.

[126] Soo-Yon Rhee, Jonathan Taylor, Gauhar Wadhera, Asa Ben-Hur, Douglas L Brutlag,
and Robert W Shafer. Genotypic predictors of human immunodeficiency virus type
1 drug resistance. Proceedings of the National Academy of Sciences, 103(46):17355–
17360, 2006.

[127] R. Tyrrell Rockafellar. Convex analysis, 1970.

[128] R Tyrrell Rockafellar. Monotone operators and the proximal point algorithm. SIAM
journal on control and optimization, 14(5):877–898, 1976.

[129] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolu-
tion strategies as a scalable alternative to reinforcement learning. arXiv preprint
arXiv:1703.03864, 2017.

[130] Tim Salimans, Jonathan Ho, Xi Chen, and Ilya Sutskever. Evolution strategies as a
scalable alternative to reinforcement learning. CoRR, abs/1703.03864, 2017.

199

[131] Todd E Scheetz, Kwang-Youn A Kim, Ruth E Swiderski, Alisdair R Philp, Terry A
Braun, Kevin L Knudtson, Anne M Dorrance, Gerald F DiBona, Jian Huang,
Thomas L Casavant, et al. Regulation of gene expression in the mammalian eye
and its relevance to eye disease. Proceedings of the National Academy of Sciences,
103(39):14429–14434, 2006.

[132] Ohad Shamir. An optimal algorithm for bandit and zero-order convex optimization
with two-point feedback. The Journal of Machine Learning Research, 18(1):1703–1713,
2017.

[133] Jie Shen and Ping Li. A tight bound of hard thresholding. The Journal of Machine
Learning Research, 18(1):7650–7691, 2017.

[134] David Silver, Anirudh Goyal, Ivo Danihelka, Matteo Hessel, and Hado van Hasselt.
Learning by directional gradient descent. In International Conference on Learning
Representations, 2021.

[135] Artem Sokolov, Julian Hitschler, Mayumi Ohta, and Stefan Riezler. Sparse stochastic
zeroth-order optimization with an application to bandit structured prediction. arXiv
preprint arXiv:1806.04458, 2018.

[136] James C Spall. A stochastic approximation technique for generating maximum
likelihood parameter estimates. In 1987 American control conference, pages 1161–
1167. IEEE, 1987.

[137] Stanislav Sykora. Surface integrals over n-dimensional spheres. Stan’s Library, (Volume
I), May 2005.

[138] Akiko Takeda, Mahesan Niranjan, Jun-ya Gotoh, and Yoshinobu Kawahara. Simulta-
neous pursuit of out-of-sample performance and sparsity in index tracking portfolios.
Computational Management Science, 10:21–49, 2013.

[139] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

[140] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

[141] Joel A Tropp and Anna C Gilbert. Signal recovery from random measurements via
orthogonal matching pursuit. IEEE Transactions on information theory, 53(12):4655–
4666, 2007.

[142] Chun-Chen Tu, Paishun Ting, Pin-Yu Chen, Sijia Liu, Huan Zhang, Jinfeng Yi,
Cho-Jui Hsieh, and Shin-Ming Cheng. Autozoom: Autoencoder-based zeroth order
optimization method for attacking black-box neural networks. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33, pages 742–749, 2019.

[143] Sara A Van de Geer. High-dimensional generalized linear models and the lasso. The
Annals of Statistics, 36(2):614–645, 2008.

200

[144] Joaquin Vanschoren, Jan N Van Rijn, Bernd Bischl, and Luis Torgo. Openml:
networked science in machine learning. ACM SIGKDD Explorations Newsletter,
15(2):49–60, 2014.

[145] Tomas Vaskevicius, Varun Kanade, and Patrick Rebeschini. Implicit regularization
for optimal sparse recovery. Advances in Neural Information Processing Systems, 32,
2019.

[146] Martin J Wainwright, Michael I Jordan, et al. Graphical models, exponential families,
and variational inference. Foundations and Trends® in Machine Learning, 1(1–2):1–
305, 2008.

[147] Christian Walck et al. Hand-book on statistical distributions for experimentalists.
University of Stockholm, 10:96–01, 2007.

[148] Jian Wang, Suhyuk Kwon, Ping Li, and Byonghyo Shim. Recovery of sparse signals
via generalized orthogonal matching pursuit: A new analysis. IEEE Transactions on
Signal Processing, 64(4):1076–1089, 2015.

[149] Yining Wang, Simon Du, Sivaraman Balakrishnan, and Aarti Singh. Stochastic zeroth-
order optimization in high dimensions. In International Conference on Artificial
Intelligence and Statistics, pages 1356–1365. PMLR, 2018.

[150] John Wright and Yi Ma. High-Dimensional Data Analysis with Low-Dimensional
Models: Principles, Computation, and Applications. Cambridge University Press,
2022.

[151] Lin Xiao. Dual averaging method for regularized stochastic learning and online
optimization. In Advances in Neural Information Processing Systems, volume 22,
2009.

[152] Yi Xu, Rong Jin, and Tianbao Yang. Non-asymptotic analysis of stochastic methods
for non-smooth non-convex regularized problems. Advances in Neural Information
Processing Systems, 32, 2019.

[153] Yi Xu, Qi Qi, Qihang Lin, Rong Jin, and Tianbao Yang. Stochastic optimization for dc
functions and non-smooth non-convex regularizers with non-asymptotic convergence.
In International Conference on Machine Learning, pages 6942–6951, 2019.

[154] Yingzhen Yang and Ping Li. Projective proximal gradient descent for a class of
nonconvex nonsmooth optimization problems: Fast convergence without kurdyka-
lojasiewicz (kl) property. arXiv preprint arXiv:2304.10499, 2023.

[155] Yingzhen Yang and Jiahui Yu. Fast proximal gradient descent for a class of non-convex
and non-smooth sparse learning problems. In Uncertainty in Artificial Intelligence,
pages 1253–1262, 2020.

201

[156] Ermoliev Yu, V Norkin, and R Wets. The minimization of discontinuous functions:
Mollifier subgradients. Technical report, Working Paper, International Institute for
Applied Systems Analysis . . . , 1992.

[157] Xiao-Tong Yuan, Ping Li, and Tong Zhang. Gradient hard thresholding pursuit.
Journal of Machine Learning Research, 18(1):6027–6069, 2017.

[158] Xiaotong Yuan and Ping Li. Stability and risk bounds of iterative hard thresholding.
In International Conference on Artificial Intelligence and Statistics, pages 1702–1710.
PMLR, 2021.

[159] Xinzhe Yuan, William de Vazelhes, Bin Gu, and Huan Xiong. New insight of variance
reduce in zero-order hard-thresholding: Mitigating gradient error and expansivity
contradictions. In The Twelfth International Conference on Learning Representations,
2024.

[160] Pengyun Yue, Long Yang, Cong Fang, and Zhouchen Lin. Zeroth-order optimization
with weak dimension dependency. In The Thirty Sixth Annual Conference on Learning
Theory, pages 4429–4472. PMLR, 2023.

[161] Qingsong Zhang, Bin Gu, Zhiyuan Dang, Cheng Deng, and Heng Huang. Desirable
companion for vertical federated learning: New zeroth-order gradient based algorithm.
In Proceedings of the 30th ACM International Conference on Information & Knowledge
Management, pages 2598–2607, 2021.

[162] Peng Zhao, Yun Yang, and Qiao-Chu He. High-dimensional linear regression via
implicit regularization. Biometrika, 2022.

[163] Pan Zhou, Xiaotong Yuan, and Jiashi Feng. Efficient stochastic gradient hard
thresholding. In Advances in Neural Information Processing Systems, volume 31,
2018.

[164] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient
ascent. In Proceedings of the 20th international conference on machine learning
(icml-03), pages 928–936, 2003.

[165] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net.
Journal of the royal statistical society: series B (statistical methodology), 67(2):301–
320, 2005.

202

	List of Tables
	List of Figures
	Introduction
	Motivations
	Background
	Convex Optimization
	Stochastic Optimization
	Zeroth-Order Optimization
	Constrained Convex Optimization
	Hard-Thresholding Algorithm
	Non-smooth Optimization

	Bibliographic Notes
	Outline
	Notations

	Zeroth-Order Hard-Thresholding
	Introduction
	Preliminaries
	Algorithm
	Random Support Zeroth-Order estimate
	SZOHT Algorithm

	Convergence analysis
	Weak/Non Dependence on Dimensionality of the Query Complexity

	Proofs of the Main Results
	Auxilliary Lemmas
	Proof of Proposition 1
	Proof of Proposition 1
	Proof of Theorem 1
	Proof of Remark 4
	Proof of Corollary 1
	Proof of Corollary 2

	Visualization: Projection of the Gradient Estimator onto a Sparse Support
	Parameters Relations: Value of rho * gamma depending on q and k*
	Experiments
	Dimension Independence/Weak-Dependence
	Sensitivity Analysis
	Real Data Experiments

	Conclusion
	ZOHT Extension: Variance Reduction
	Introduction
	Experiments

	ZOHT Extension: Discontinuous and Non-convex Case
	Preliminaries
	Objective Function
	Our Proposal: NESHT
	Convergence Analysis
	Proofs of the Main Results

	Iterative Hard Thresholding over Sparse Support-Preserving Sets
	Introduction
	Related Works
	Local Guarantees for Combined Constraints
	Global Guarantees for IHT and RSC Functions

	Preliminaries
	Proof of Remark 10

	Deterministic Case
	Algorithm
	Convergence Analysis

	Proofs for Deterministic Optimization
	Proof of Lemmas 11 and 13
	Proof of Theorems 3 and 4
	Lower Bound on the Sparsity Relaxation

	Extensions: Stochastic and Zeroth-Order Cases
	Stochastic Optimization
	Zeroth-Order Optimization (ZOO)

	Proofs for Stochastic and Zeroth-Order Optimization
	Discussion on Restricted Smoothness Assumptions
	Proof of Theorems 6 and 7
	Proof of Corollary 3
	Proof of Theorems 8 and 9
	Proof of Corollary 4

	Experiments
	Synthetic Experiments: Illustrating the Sparsity/Optimality Trade-Off
	Synthetic Experiment: Comparing Two-Step Projection and Euclidean Projection
	Real Data Experiment: Portfolio Index Tracking
	Real Data Experiment: Multiclass Logistic Regression

	Conclusion

	Iterative Regularization with k-Support Norm.
	Interlude: a Dual Perspective on Iterative Hard-Thresholding
	Introduction
	Preliminaries
	The Algorithm
	Main Results
	Assumptions
	Discussion on the Assumptions
	Early Stopping Bound

	Proofs of the Main Results
	Notations and Definitions
	Recall on the Conditions for Recovery with l1 Regularization
	Proof of Theorem 10
	Useful Results
	Proximal Operator of the k-support Norm

	Illustrating Example
	Experiments
	Synthetic Example
	Path of IRKSN vs Lasso vs ElasticNet
	fMRI Decoding
	Prediction on Real Data

	Conclusion

	References

