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Introduction

Compressed sensing problem: observe X (input) and y δ (output)
and reconstruct w∗, assumed to be k-sparse, and with noise ϵ such
that ∥ϵ∥2 ≤ δ:

y δ = Xw∗ + ϵ

Contribution: We propose an algorithm with new conditions
for recovery, complementing usual existing ones based on ℓ1 norm.
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Notations

For S ⊆ [d ], S̄ := [d ] \ S
M†: Moore-Penrose pseudo-inverse [3]

∥M∥: nuclear norm
MS column-restriction of M to support S ⊆ [d ], i.e. the
n × |S | matrix composed of the |S | columns of M of indices
in S

supp(w): support of w (coordinates of the non-zero
components of w)

wS ∈ Rk restriction of wS to a support S of size k , i.e. the
sub-vector of size k formed by extracting only the components
wi with i ∈ S

sgn(w) vector of signs of w
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Conditions for recovery

Method Condition on X

IHT [2] Restricted Isometry Property (RIP)

Lasso [8] max
ℓ∈S̄
|⟨X †

Sxℓ, sgn(w∗
S )⟩| < 1(2)

ElasticNet [11] -
KSN pen. [1] -
OMP [9] RIP

SRDI [7]

{
∃γ ∈ (0, 1] : X⊤

S XS ≥ nγId,d
∃η ∈ (0, 1) : ∥XS̄X

†
S∥∞ ≤ 1− η

IROSR [10] RIP

IRCR [6] max
ℓ∈S̄
|⟨X †

Sxℓ, sgn(w∗
S )⟩| < 1(2)

IRKSN (ours) max
ℓ∈S̄
|⟨X †

Sxℓ,w∗
S ⟩| < min

j∈S
|⟨X †

Sxj ,w∗
S ⟩|
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Our contribution

Figure: Conditions for recovery. In some cases (in blue), only IRKSN (our
algorithm) can provably ensure sparse recovery.
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Iterative Regularization

Iterative regularization (see e.g. IRCR [6]), solves the following
problem with early stopping:

min
w

R(w)

s.t. Xw = y δ

IRCR [6] uses R(w) = ∥w∥1 . We propose to use instead a
regularizer based on the k-support norm:

R(w) = F (w) +
α

2
∥w∥22

where

F (w) =
1− α

2
(∥w∥spk )2

with ∥ · ∥spk is the k-support norm. We solve it via a primal-dual
algorithm from [4].
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Note on the k-support norm (KSN)

KSN ball is tightest convex relaxation of ℓ0 and ℓ2 ball:

{x : ∥x∥spk ≤ D} = conv({x : ∥x∥0 ≤ k} ∩ {x : ∥x∥2 ≤ D})

The proximal operator for the squared KSN is known [5].

Figure: k-support norm ball (source: [1])

7 / 16



Algorithm: IRKSN

Algorithm 1: IRKSN

Initialization: v̂0 = ẑ−1 = ẑ0 ∈ Rd , γ = α∥X∥−2, x0 = 1
for t = 0, ...,T do

ŵt ← proxα−1F

(
−α−1XT ẑt

)
r̂t ← proxα−1F

(
−α−1XT v̂t

)
ẑt ← v̂t + γ

(
Xr̂t − y δ

)
θt+1 ←

(
1 +

√
1 + 4θ2t

)
/2

v̂t+1 = ẑt + θt−1
θt+1

(ẑt − ẑt−1)

end
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Sufficient conditions for recovery: comparison with ℓ1 norm

Assumption (Conditions for recovery with ℓ1 norm-based
algorithms)

Let w∗ be supported on a support S ⊂ [d ]. w∗ is such that:

1 Xw∗ = y
2 XS is injective

3 maxℓ∈S̄ |⟨X
†
Sxℓ, sgn(w

∗
S)⟩| < 1

Assumption (Conditions for recovery with IRKSN)

w∗ k-sparse, supp(w∗) = S ⊂ [d ], Xw∗ = y
w∗

S = argminz∈Rk :XSz=y ∥z∥2
maxℓ∈S̄ |⟨X

†
Sxℓ,w

∗
S⟩| < minj∈S |⟨X †

Sxj ,w
∗
S⟩|

Does not need XS to be injective !
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Conditions for recovery, case where XS is injective

If XS is injective and Xw∗ = y , the conditions become:

Assumption (Conditions for recovery with ℓ1 norm-based
algorithms)

(A) : max
ℓ∈S̄
|⟨X †

Sxℓ, sgn(w
∗
S)⟩| < 1

Assumption (Conditions for recovery with IRKSN)

(B) : max
ℓ∈S̄
|⟨X †

Sxℓ,
w∗

S

minj∈S |w∗
S |
⟩| < 1

It is possible to find examples of design matrix X and vector w∗

which verify (B) but not (A): IRKSN is ensured to recover w∗

there, contrary to ℓ1 norm-based algorithms.
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Experiments: Synthetic design matrix X

(a) F1-score vs. n (b) F1-score vs. snr

(c) F1-score vs. ρ (d) F1-score vs. t

Figure: F1-score of support recovery for a correlated design matrix [6] ρ:
correlation, snr: signal/noise ratio, n: num. samples.
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Experiments: fMRI decoding

Lasso ElasticNet OMP IHT KSN IRKSN IRCR IROSR SRDI

face’/’house’ .425 .349 .938 .2441 .247 .2440 .341 .381 .314
’house’/’shoe’ .528 .500 .938 .2968 .299 .2965 .407 .502 .357

Table: Model estimation ∥w −w∗∥ (w∗: obtained by EnCluDL).

(a) Lasso (b) Enet (c) OMP (d) SRDI

(e) IROSR (f) IHT (g) IRCR (h) KSN

(i) IRKSN (j) EnCluDL

Figure: Reconstructed functional region (EnCluDL ∼ ground-truth) 12 / 16
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