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Introduction

Compressed sensing problem: observe X (input) and y° (output)
and reconstruct w*, assumed to be k-sparse, and with noise € such
that ||€]|2 < 6:

y) = Xw* +¢€

Contribution: We propose an algorithm with new conditions
for recovery, complementing usual existing ones based on ¢1 norm.
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For SC[d], S:=[d]\S
M Moore-Penrose pseudo-inverse [3]
|IM||: nuclear norm

Ms column-restriction of M to support S C [d], i.e. the

n x |S| matrix composed of the |S| columns of M of indices
inS

supp(w): support of w (coordinates of the non-zero
components of w)

ws € RX restriction of ws to a support S of size k, i.e. the
sub-vector of size k formed by extracting only the components
w; withi e S

sgn(w) vector of signs of w
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Conditions for recovery

METHOD CONDITION ON X
IHT [2] RESTRICTED ISOMETRY PROPERTY (RIP)
Lasso [8]

ELASTICNET [11]
KSN pPEN. [1]
OMP [9]

SRDI [7]

IROSR [10]
IRCR [6]

IRKSN (ours)

max |(X{x;, sgn(wg))| < 1®
Les

RIP

{ Iy €(0,1]: XJ Xs > nvylyq
In€(0,1): [[Xs Xl <1—17

RIP

max |(Xdxp, sgn(ws))| < 1)

Les

1 . . t .
max [(Xdxy, wE)| < min [(Xix;, w
max | (Xdxe, w3)| < min (XLag. ws)|
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Our contribution

~hse
Lasso, IRCR

(k-c)-RIP
| < IROSR \
™

Figure: Conditions for recovery. In some cases (in blue), only IRKSN (our
algorithm) can provably ensure sparse recovery.
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lterative Regularization

Iterative regularization (see e.g. IRCR [6]), solves the following
problem with early stopping:

min R(w)
s.t. Xw= y‘S

IRCR [6] uses R(w) = ||w/||1 . We propose to use instead a
regularizer based on the k-support norm:

a 2
R(w) = F(w) + S [lwll2
where
l—«o
2

with || - || is the k-support norm. We solve it via a primal-dual
algorithm from [4].

F(w) = (lwlF)*
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Note on the k-support norm (KSN)

@ KSN ball is tightest convex relaxation of £y and #5 ball:
{x :[Ix[l;” < D} = conv({x : [|Ix[lo < k} N {x: [|x]> < D})
@ The proximal operator for the squared KSN is known [5].

=

Figure: k-support norm ball (source: [1])
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Algorithm: IRKSN

Algorithm 1: IRKSN

Initialization: ¥y =2 1 =2 € RY v =a|| X[ 2,x =1
fort=0,...,T do

W < proxX,-1ig (—oz_IXTz})

Pt < prox,-1f (—OF1XT|7t)

2t 0+ (XP—y°)

O i1 < (1 + /1 +40$) /2

o (2= 2-1)

Vi1 =2 +

end
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Sufficient conditions for recovery: comparison with ¢; norm

Assumption (Conditions for recovery with ¢; norm-based
algorithms)

* |s such that:

Let w* be supported on a support S C [d]. w
QO Xw'=y
@ Xs is injective

© maxes |(Xixe, sgn(ws))| < 1

Assumption (Conditions for recovery with IRKSN)

o w* k-sparse, supp(w*) =S C [d], Xw* =y
W; = arg minzGRk Xsz=y [E4|P

max,c35 [(X SXg, we)| < minjes [(X SXJ’ wi)|
Does not need Xs to be injective !
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Conditions for recovery, case where Xs is injective

If Xs is injective and Xw* =y, the conditions become:

Assumption (Conditions for recovery with ¢; norm-based
algorithms)

(A): mag<|<X;xz,sgn(w§))| <1
lesS

Assumption (Conditions for recovery with IRKSN)

W*
B) : max XTx,_is <1
(B) £e§‘< o mlnjes\W§|>|

It is possible to find examples of design matrix X and vector w*
which verify (B) but not (A): IRKSN is ensured to recover w*
there, contrary to #1 norm-based algorithms.
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Experiments: Synthetic design matrix X

(c) Fl-score vs. p (d) Fl-score vs. t

Figure: F1l-score of support recovery for a correlated design matrix [6] p:

correlation, snr: signal/noise ratio, n: num. samples.
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Experiments: fMRI decoding

Lasso ElasticNet OMP IHT KSN IRKSN IRCR IROSR SRDI
face'/"house’ 425 .349 .938 .2441 247 .2440 341 .381 314
"house’ /’shoe’ 528 .500 .938 .2968 299 .2965 407 .502 .357

Table: Model estimation ||w — w*|| (w*: obtained by EnCluDL).

Figure: Reconstructed functional region (EnCluDL ~ ground-truth)

(i) IRKSN

(j) EnCluDL
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