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Abstract

Problem: min
x∈Rd

{
f (x) := Eξf (x, ξ)

}
, s.t. ∥x∥0 ≤ k

We optimize a function under hard sparsity constraints (ℓ0), with only access to
functions evaluation (ZO). We reveal a conflict between the ZO gradient error
and the expansivity of hard-thresholding, which results into a minimum number
of random directions q necessary for our convergence result to hold. We show that
the query complexity (QC) is dimension independent (if f is smooth), or weakly
dimension dependent (if f is RSS). We confirm the efficiency of our algorithm
experimentally.

Related Works

StoIHT [4] Stochastic Hard-Thresholding algorithm (first order (FO))
RSPGF [2] Proximal ZO with ℓ1 penalty
ZSCG [1] Frank-Wolfe ZO with ℓ1 ball constraint
ZORO [3] Proximal ZO algorithm with ℓ1 penalty, retrieving ∇f by CoSaMP

Type Name Assumptions #IZO(=QC)/#IFO
FO/ℓ0 StoIHT [4] RSS, RSC O(κ log(1

ε))
ZO/ℓ1 RSPGF [2] smooth O( d

ε2)
ZO/ℓ1 ZSCG [1] convex, smooth O( d

ε2)

ZO/ℓ1 ZORO [3]
∇f s-sparse,

∇2f weakly-sparse,
f smooth & RSCother

O(s log(d) log(1
ε))

ZO/ℓ0 SZOHT RSS, RSC O((k + d
s2

)κ2 log(1
ε))

ZO/ℓ0 SZOHT smooth, RSC O(kκ2 log(1
ε))

Assumptions

(νs, s)-RSC: ∀(x, y) ∈ Rd s.t. ∥x − y∥0 ≤ s : f (y) ≥ f (x) + ⟨∇f (x), y − x⟩ + νs
2 ∥x − y∥2

(Ls, s)-RSS: ∀(x, y) ∈ Rd s.t. ∥x − y∥0 ≤ s : ∥∇fξ(x) − ∇fξ(y)∥ ≤ Ls∥x − y∥
σ2 := Eξ[∥∇fξ(x∗)∥2

∞] is finite

The SZOHT algorithm

Initialization: learning rate : η, max. iter.: T , size of support: s2, num. of
random directions: q, num. of coordinates kept: k = O(κ4k∗), init.: x0 with
∥x0∥0 ≤ k∗ (e.g. x0 = 0).
Output: xT .
for t = 1, ..., T do

Sample ξ (for instance sample a train sample)
for i = 1, ..., q do

Sample a random support S ∼ U(
([d]

s2

)
)

Sample a random direction ui from the unit sphere supported on S:
ui ∼ U

(
Sd

S

)
Compute ∇̂fξ(xt−1; ui) = d

µ

(
fξ(xt−1 + µui) − fξ(xt−1)

)
ui

end
Compute ∇̂fξ(xt−1) = 1

q

∑q
i=1 ∇̂fξ(xt−1; uj) # ZO grad.

Compute xt = Φk(xt−1 − η∇̂fξ(xt−1)) # Hard-Thresholding
(Φk : keeps only the top-k entries (sets others to 0))

end

Gradient Error

Proposition 1: For a support F ⊂ [d] of size s, q random directions, and random
supports of size s2, with fξ (Ls2, s2)-RSS, with ∇̂F fξ(x) the hard thresholding of
∇fξ(x) on F (that is, we set all coordinates not in F to 0), we have:

E∥∇̂F fξ(x) − ∇F fξ(x)∥2 ≤ ϵerr∥∇F fξ(x)∥2 + C2∥∇F cfξ(x)∥2 + C3µ
2

with ϵerr = O
(

1 +
s + d/s2

q

)
, C2=O

(
s
q

)
, C3=O

(
L2

s2

(
ss2
q (d+ss2)+sd

))

Expansivity

Projection on the ℓ0 ball (Bℓ0,k) is not non-expansive:

∀y ∈ Rd, x∗ ∈ Bℓ0,k∗ : ∥Φk(y) − x∗∥ ≤ γ∥y − x∗∥ with γ > 1

γ =
√

1 +
(

k∗/k +
√

(4 + k∗/k) k∗/k
)

/2 (from [5])

∇f(x)

∇F f(x)

∇̂f(x)
∇̂F f(x)

‖∇F f(x)− ∇̂F f(x)‖

‖∇f(x)− ∇̂f(x)‖

1
(a) Gradient Error (b) Expansivity

Convergence Analysis

Convergence rate: (Theorem 1)

E∥xt − x∗∥ ≤ (ργ)t ∥x0 − x∗∥ + (·)σ + (·)µ

with η = ν

(4ϵerr + 1)L2, ρ = 1 − ν2

(4ϵerr + 1)L2

We want ργ < 1 for convergence, so we need q large enough.

Necessary condition on q (Remark 4): q ≥ 4κ2
√

k∗d
s2

Sufficient condition on q (Corollaries 1 & 2):
With k ≥ (86κ2 − 12κ2)k∗, κ := Ls′

νs
, and s′ := max(s2, s):

if f is s′-RSS: take q ≥ 2s + 6 d
s2

, to get QC: O(κ2(k + d
s2

) log(1
ε))

=⇒ Weakly dimension dependent
(e.g. if s2 = d/m, m ∈ [[1, d]])

if f is smooth & s2 = d: take q ≥ 2(s + 2), to get QC: O(κ2k log(1
ε))

=⇒ Dimension independent

Sensitivity Analysis

(c) f (x) (d) ∥x − x∗∥

Evolution of f (x) and ∥x − x∗∥, on a toy quadratic problem, for several values of
q. If q is too small, the gradient error is too large and even if we decrease the
learning rate accordingly, we cannot make enough progress to counterbalance
expansivity, and don’t converge anymore.

Applications

Asset management [6], (a), (b), (c) :

min
x∈Rd

x⊤Cx

2
(∑d

i=1 xi

)2 + λ

(
min

{∑d
i=1 mixi∑d

i=1 xi

− r, 0

})2

s.t. ∥x∥0 ≤ k

Few pixels adv. attacks [7], (d), (e), (f) :
min

δ
f (x + δ) s.t. ∥δ∥0 ≤ k

Comparison with ZSCG [1], RSPGF [2], ZORO [3]: improved QC

(e) port3 (f) port4 (g) port5

(h) MNIST (i) CIFAR (j) Imagenet

Figure 1. f (x) vs. # queries
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