Iterative Regularization with k-Support Norm: an Important Complement to Sparse Recovery

Introduction

Compressed sensing problem: observe X (input) and y° (output) and reconstruct w*,
assumed to be k-sparse, and with noise € such that |[e|[2 < 9:

Y’ = Xw* +e

Contribution: We propose an algorithm with new conditions for
recovery, complementing usual existing ones based on ¢; norm.

Notations

For SC|d], S:=|d\S

« M: Moore-Penrose pseudo-inverse [1]

| M ||: nuclear norm

= Mg column-restriction of M to support S C [d], i.e. the n X |S| matrix composed
of the |.S| columns of M of indices in S

= supp(w): support of w (coordinates of the non-zero components of w)

" Wwg € R” restriction of wg to a support S of size k, i.e. the sub-vector of size k
formed by extracting only the components w; with ¢ € §

= sgn(w) vector of signs of w

Conditions for recovery
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Figure 1. Conditions for recovery. In some cases (in blue), only IRKSN (our algorithm) can provably

ensure sparse recovery.
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Note on the k-support norm (KSN)
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= KSN ball is tightest convex relaxation of ¢ and ¢5 ball:

{z:||lzll," < D} = conv({z : ||zflo < k} N {z : ||z]2 < D})

= The proximal operator for the squared KSN is known [11].

Figure 2. k-support norm ball (source: [5])

Algorithm: IRKSN

Algorithm 1: IRKSN

Initialization: vg=2_1 =2 € Rd,v = OzHXH_Q, xo)=1
fort =0,....,7 do

W < ProxX,—1p (—@_1XT£t)

Pt < Prox,—1p (—oz_lXTﬁt)

2t Ut + (X’ft — y(s)

Oy 1 (1 + \/1 +49§) /2

A A 69 ——-1 A A
Ute1 = 2t T 9 (2t — 2t 1)
end

Sufficient conditions for recovery: comparison with /; norm

= Conditions for recovery with ¢; norm-based algorithms Let w™ be supported on a

support S C |d|. w™ is such that:

1. Xw* =y

2. X g is injective

3. max, g ]{X;a}g,sgn(wg)ﬂ <1

* Conditions for recovery with IRKSN:

« w* k-sparse, supp(w®) =S5 C [d], Xw* =1y

- w§ = arg minzeRk:XSz:y | z]]2

e max, g [(X hag, wh)| < minjeg (X e, wh)]
= Does not need X ¢ to be injective

Conditions for recovery, case where Xg is injective

Iterative regularization (see e.g.

stopping:
min R(w)
st. Xw = y5
IRCR [9] uses R(w) = ||w]|[1 . We propose to use instead a regularizer based on the

k-support norm:

where

with || - Hip is the k-support norm. We solve it via a primal-dual algorithm from [10].

IRCR [9]), solves the following problem with early

If X ¢ is injective and X w™ = y, the conditions become:

* Conditions for recovery with £ norm-based algorithms:

(A) : max [ (X Lag, sgn(wl))] < 1
leS

* Conditions for recovery with IRKSN

w>|<
(B) : max | (X Lay, ——2 —
res minjeg |wy|

) <1

It is possible to find examples of design matrix X and vector w™ which verify (B) but

not (A): IRKSN is ensured to recover w™ there, contrary to /1 norm-based algorithms.

Experiments: Synthetic desigh matrix X
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Figure 3. Fl-score of support recovery for a correlated design matrix [9] p: correlation, snr:
ratio, n: num. samples.
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Experiments: fMRI decoding

Lasso ElasticNet OMP IHT KSN IRKSN IRCR IROSR SRDI

face'/’house’ .425 349
'house’ /'shoe’ .528 500

938 .2441 247 .2440 .341 381 314
0938 .2968 .299 .2965 .407 502 .357

Table 1. Model estimation [[w — w*|| (w*: obtained by EnCluDL [12]).
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Figure 4. Reconstructed functional region (EnCluDL [12] ~ ground-truth)
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