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Introduction

Compressed sensing problem: observe X (input) and yδ (output) and reconstruct w∗,
assumed to be k-sparse, and with noise ϵ such that ∥ϵ∥2 ≤ δ:

yδ = Xw∗ + ϵ

Contribution: We propose an algorithm with new conditions for
recovery, complementing usual existing ones based on ℓ1 norm.

Notations

For S ⊆ [d], S̄ := [d] \ S

M †: Moore-Penrose pseudo-inverse [1]
∥M∥: nuclear norm
MS column-restriction of M to support S ⊆ [d], i.e. the n× |S| matrix composed
of the |S| columns of M of indices in S

supp(w): support of w (coordinates of the non-zero components of w)
wS ∈ Rk restriction of wS to a support S of size k, i.e. the sub-vector of size k
formed by extracting only the components wi with i ∈ S

sgn(w) vector of signs of w

Conditions for recovery

Method Condition on X

IHT [2] Restricted Isometry Property (RIP)
Lasso [3] max

ℓ∈S̄
|⟨X†Sxℓ, sgn(w∗S)⟩| < 1(2)

ElasticNet [4] -
KSN pen. [5] -
OMP [6] RIP

SRDI [7]
{
∃γ ∈ (0, 1] : X⊤S XS ≥ nγId,d

∃η ∈ (0, 1) : ∥XS̄X
†
S∥∞ ≤ 1− η

IROSR [8] RIP
IRCR [9] max

ℓ∈S̄
|⟨X†Sxℓ, sgn(w∗S)⟩| < 1(2)

IRKSN (ours) max
ℓ∈S̄
|⟨X†Sxℓ, w∗S⟩| < min

j∈S
|⟨X†Sxj, w∗S⟩|

Figure 1. Conditions for recovery. In some cases (in blue), only IRKSN (our algorithm) can provably
ensure sparse recovery.

Iterative Regularization

Iterative regularization (see e.g. IRCR [9]), solves the following problem with early
stopping:

min
w

R(w)

s.t. Xw = yδ

IRCR [9] uses R(w) = ∥w∥1 . We propose to use instead a regularizer based on the
k-support norm:

R(w) = F (w) + α

2
∥w∥22

where
F (w) = 1− α

2
(∥w∥sp

k )2

with ∥ · ∥sp
k is the k-support norm. We solve it via a primal-dual algorithm from [10].

Note on the k-support norm (KSN)

KSN ball is tightest convex relaxation of ℓ0 and ℓ2 ball:
{x : ∥x∥sp

k ≤ D} = conv({x : ∥x∥0 ≤ k} ∩ {x : ∥x∥2 ≤ D})
The proximal operator for the squared KSN is known [11].

Figure 2. k-support norm ball (source: [5])

Algorithm: IRKSN
Algorithm 1: IRKSN
Initialization: v̂0 = ẑ−1 = ẑ0 ∈ Rd, γ = α∥X∥−2, x0 = 1
for t = 0, ..., T do

ŵt← proxα−1F

(
−α−1XT ẑt

)
r̂t← proxα−1F

(
−α−1XT v̂t

)
ẑt← v̂t + γ

(
Xr̂t − yδ

)
θt+1←

(
1 +

√
1 + 4θ2

t

)
/2

v̂t+1 = ẑt + θt−1
θt+1

(ẑt − ẑt−1)
end

Sufficient conditions for recovery: comparison with ℓ1 norm

Conditions for recovery with ℓ1 norm-based algorithms Let w∗ be supported on a
support S ⊂ [d]. w∗ is such that:
1. Xw∗ = y
2. XS is injective
3. maxℓ∈S̄ |⟨X

†
Sxℓ, sgn(w∗S)⟩| < 1

Conditions for recovery with IRKSN:
w∗ k-sparse, supp(w∗) = S ⊂ [d], Xw∗ = y
w∗S = arg minz∈Rk:XSz=y ∥z∥2
maxℓ∈S̄ |⟨X

†
Sxℓ, w∗S⟩| < minj∈S |⟨X

†
Sxj, w∗S⟩|

Does not need XS to be injective !

Conditions for recovery, case where XS is injective

If XS is injective and Xw∗ = y, the conditions become:
Conditions for recovery with ℓ1 norm-based algorithms:

(A) : max
ℓ∈S̄
|⟨X†Sxℓ, sgn(w∗S)⟩| < 1

Conditions for recovery with IRKSN

(B) : max
ℓ∈S̄
|⟨X†Sxℓ,

w∗S
minj∈S |w∗S|

⟩| < 1

It is possible to find examples of design matrix X and vector w∗ which verify (B) but
not (A): IRKSN is ensured to recover w∗ there, contrary to ℓ1 norm-based algorithms.

Experiments: Synthetic design matrix X

(a) F1-score vs. n (b) F1-score vs. snr

(c) F1-score vs. ρ (d) F1-score vs. t

Figure 3. F1-score of support recovery for a correlated design matrix [9] ρ: correlation, snr: signal/noise
ratio, n: num. samples.

Experiments: fMRI decoding

Lasso ElasticNet OMP IHT KSN IRKSN IRCR IROSR SRDI
face’/’house’ .425 .349 .938 .2441 .247 .2440 .341 .381 .314
’house’/’shoe’ .528 .500 .938 .2968 .299 .2965 .407 .502 .357

Table 1. Model estimation ∥w −w∗∥ (w∗: obtained by EnCluDL [12]).

(a) Lasso (b) Enet

(c) OMP (d) SRDI

(e) IROSR (f) IHT

(g) IRCR (h) KSN

(i) IRKSN (j) EnCluDL [12]

Figure 4. Reconstructed functional region (EnCluDL [12] ∼ ground-truth)
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