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L Introduction

Introduction

Sparse Optimization:
min f(x
lIx[lo<k ()
Applications:
m Sparse regression/classification (e.g. gene array data)

m Sparse recovery
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‘— Introduction

TL;DR

Main contributions:
m ZOHT: condition on number of random directions g

m IRKSN: new conditions for linear sparse recovery
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Zeroth-Order

TR )

Gradient descent:
Xeyr1 = X¢ — VI (x¢)
What if we don't know V£(-), but only f(-) ?
m Black-Box Adversarial attacks [1]

. v

+.007 x

T+
z (V=] (6,2.9)) esign(V.,J(0, 2, 1))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

m Reinforcement learning [2]
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Approximate Vf(x): two points approximation [3] [4]:

m One random direction u:

)= df(x—l—,uu)— f(x)

VFf(x
W

u with u~ Uni(Sy)

m g random directions {u;}7_;:

q
A f ) —f id.
VE(x) :;’E: (”’“Z) ) with {ui}?, 2 Uni(sy)
i=1

6/40



Candidacy Exam
L Research Progress
LzoHT

Curse of dimensionality: An impossibility result [7]

Under standard assumptions (strongly cvx, smooth, noisy obs.):
Y algorithm, 3 f,q, s.t. we need more than O(d/e?) queries to
achieve E[faqu(XT) — fagv(x:)] < €”

Solutions in litterature: more assumptions on f:
m f(x) = g(Ax) with rank(A) << d [5]

m sparse/compressible gradients [6]
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Vanilla ZO

Most ZO algorithms [4], [8], [9]:

Algorithm 1: Vanilla ZO
0)

Initialization: 7, T, x(
Output: x7.
fort=1,..., T do
Sample u ~ Uni(Sy)
VF(xe-1) < 9 (F(x + pu) — f(x)) u;
Xt < Xp—1 — n@f(xt—l);
end

Note: just 1 random direction u is sufficient (with proper 7)
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Zeroth-Order Hard-Thresholding: Our approach

Consider the non-convex £y “ball”

min  f(x
x s.t.||x[jo<k ( )

@

(@ (b)  fo
(10]

Why not ¢; ? /7 is convex (impossibility result)
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ZOHT: Zeroth-Order Hard-Thresholding

Algorithm 2: SZOHT (simplified)
Initialization: 7, T, q, k = O(k*k*), x()
Output: x7.
fort=1,...,T do
fori=1,...,qgdo

Sample u; ~ Uni(Sy)

V(xe-1; 1) = 4 (F(x + pu) — £(x)) uy;
end
VF(xe_1) < %27:1 VF(xe_1; u))
Xt Pp(xe—1 — n@f(xt,l)); hard-thresholding
end
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Dimension independence

m vanilla ZO: O(d) QC comes from ||Vf(x) — V£ (x)|> < O(d)
u ZOHT: ||©Ff(x) - VFf(X)H2 S O(k) (props. of projections [11])

Vi(x)

IVF(z) - V()|
V()
— VA'Ff(m)

Vef(@) ™ ||Vif(z) — Vef(o)|

Figure: Gradient estimate and its projections
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Tuning g: gradient error vs. expansivity

Main difference with vanilla ZO: projection on the /g ball (B, k) is
not non-expansive:

¥y € RY x" € By [@x(y) — x| < lly — x|

with v > 1

u
>< o)
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Tuning g: gradient error vs. expansivity

Convergence rate:
Ellxc — x*[ < (07)" 10 = x*[| + () + (-u

With 7 = corr < O(X), k> £

| 4 _ l/2
G2 P =1~ G e -7
Sufficient: (by inspection) valid g s.t. py <1: g > 2(3k+2)
Necessary: minimum g so that 3 valid k s.t. py < 1:

k*d
52

q24/£2 >1
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Tuning g: gradient error vs. expansivity

T 25000 50000 75000 100000 125000 150000 175000
Function Evaluations

(a) f(x) (b) [Ix — x|

Figure: Sensitivity analysis

Toy XP: f(x) = %||la® (x — b)||?, (a and b chosen to have

|IVf(x*)|| small enough). n = m. For g =1 and 20,

|x(t) — x*|| does not converge.
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Improvements: sampling along a random support

u; ~ Uni (Ss) with S ~ Uni((!9]))
m memory efficiency (if distributed learning)
m allows to work with “restricted smoothness” only

m can improve the condition number v/L
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Experiments

m Asset management [12], (a), (b), (<) :

. x T Cx L mix; ., 2 < .
By o) e e
m Few pixels adv. attacks [13], (d), (¢). () : ming £(x + &) such that ||8]lp < k
m Comparison with ZSCG [14], RSPGF [15], ZORO [6] (f(x) vs
QQC)

(d) MNIST (e) CIFAR  (f) Imagenet 16 /40
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lterative Regularization with k-support norm: A Dual
Perspective on Hard-Thresholding

Original Goal: Online £y optimization.
Attempt 1: Modify Online Convex Optimization ([16])

Xer1 = Pr(xe — 0 VF(x¢))

Problem: Could not get sublinear regret

17/40



Candidacy Exam
L Research Progress
L IRKSN

Dual Perspective on IHT (contd.)

Attempt 2: Dual Averaging[17]/(Lazy) Mirror Descent[18]/Lazy
OCO[16]/Bregman lterations [19]:
Ye+1 =yt — e V(xt)
Xt41 = ‘Dk(.Yt+1)
Problem: ®,(-) = 9¢(-) with ¢(-) = 3(|| - (9))2 (top-k norm). ¢
not smooth...(proof cannot work)
But we can take the 5-Moreau smoothing, to get:

s0=C S0 I0F RSB )
N —

k-support norm (KSN)

4
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Note on the k-support norm

m KSN ball is tightest convex relaxation of £y and /> ball:

{x ¢ lIx|l;” < D} = conv({x : [|x[lo < k} N {x : ||x||l2 < D})
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Dual Perspective on IHT (contd.)

Algorithm becomes:

Yt+1 = Yt — UtVf(Xt)

_ Yt+1
Xe1 = Prox ey (=5)

Some properties: (not just online)
m Not really new now (MD/DA/BI, with just new use of KSN)
m x; empirically "almost” sparse (prelim. XPs)
m BUT: MD, so convergence to x* (maybe not sparse)

m For overparam. linear models: implicit bias towards min
KSN? (46¢2) solution

m BUT: may still not be k-sparse
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IRKSN

We simplify the problem, to make proofs easier — sparse
recovery:

y' = Xw* + €

lell <&

Solved by a tweaked version of ADGD [20], solving, with early
stopping
min R(x) s.t. Xw = y°
X

with R(w) = F(w) + ||wl|2® with F(w) = 352 (||wl[{)?
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Algorithm

Algorithm 3: IRKSN

Initialization: ¥y =2 1 = 20 € R,y = a|| X[ 2,x =1
Output: wt

fort=0,...,T do

W; 4 proxg-1p (—a X T 2)

Ft < proxX,-i1g (—O[_]'XTVt)

2[- — |7t +")/(Xft —yé)

Xey1 (1 +14 4xt2) /2

o (2= 2)

Vi1 =2 +

end
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Recovery

w* k-sparse, supp(w*) =S C [d], Xw* =y,
W; = arg minzGRk:st:y HZHQ

T * : T *
max [{Xixp, we)| < min |[(Xex;, w
max | (XExe, w3)| < min (X w3)

Theorem (Early Stopping Bound)

| Wy — w||2 < atd + bt 1

2| X1 (X3 ) ws]

with a=4|X||™* and b= 5
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Comparison with ¢;-based recovery

Assumption (Recovery with ¢; norm.)

* js such that:

Let w* be supported on a support S C [d]. w
Xw* =y
Xs is injective

Maxcs |<X;X£,Sgn(W§)>| <1
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If Xs is injective

IRKSN I1 iter. reg.
max |(XIx, — 5y <1 max | (XLx;, sgn(w2))| < 1
0e5 minjcs [wg| tes
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Variance Reduction

VR-SZHT introduced by Xinzhe Yuan:

Algorithm 4: Stochastic variance reduced zeroth-order Hard-
Thresholding (VR-SZHT)

Initialization: 7, T, x°, SVRG update frequency m, q, k.

Output: x 7.
forr=1,...,T do
x(o):xr L —12, 1V;"( 0); for t=0,1,...,m—1
do

Randomly sample i¢ € {1,2,...,n}; Compute ZO
estimate VF; (x(t)) V£ (x © ))
XD = X8 — y(VF, (x9) = 9,(x0) + ),
X+ = g, (=(04D);

end

x" = x(m),

end
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LVa\riance Reduction

VR-SZHT

Removes need for minimum g: VR can compensate the variance of
gradient estimate
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L Additional Constraints

Additional Constraints

1 n
in F(x) ==Y fi(x), s.t. <kandxeS. (1
min P =33 A, st ldo < kand xS, (1

Useful e.g. in adversarial attacks.
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Structural sparsity

We may want to enforce constraints of the form:
{x € R?: |Ixg,[lo < D1 A[|xg,llo < D2}

xg, and xg,: a partition of x into coordinates from a group G; and
a group Go.
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L Reinforcement learning

Reinforcement learning

Salimans et al. [21]: Evolution Strategies (=~ ZO) very efficient for
RL (esp. distributed)

BUT: dependence on d (d >> 1 for DNNs).

—> Could using ZOHT reduce the dependence in d?

~— 18 cores, 657 minutes

2

Median time to solve (minutes)

1440 cores, 10 minutes ——

S

L
102 10°
Number of CPU cores

Figure 1: Time to reach a score of 6000 on
3D Humanoid with different number of CPU
cores. Experiments are repeated 7 times and
median time is reported.
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Others

Other potential ideas:

m Low-rank Matrices

m Sparse graphs

m Acceleration of ZOHT [22]

m Relaxed Assumptions (non-RSC)

m Lower bound for ZOO with sparse optima

= Non-convex regularization: h(x) = A(3(||x||;7)? — [/x[13)
w
i

i

Figure: Nonconvex penalty based on the k-support norm.
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QA
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