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Introduction

Introduction

Sparse Optimization:

min
∥x∥0≤k

f (x)

Applications:

Sparse regression/classification (e.g. gene array data)

Sparse recovery
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Introduction

TL;DR

Main contributions:

ZOHT: condition on number of random directions q

IRKSN: new conditions for linear sparse recovery

4 / 40



Candidacy Exam

Research Progress

ZOHT

Zeroth-Order

min
x∈R

f (x)

Gradient descent:
xt+1 = xt − η∇f (xt)

What if we don’t know ∇f (·), but only f (·) ?
Black-Box Adversarial attacks [1]

Reinforcement learning [2]
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Research Progress

ZOHT

Approximate ∇f (x): two points approximation [3] [4]:

One random direction u:

∇̂f (x) = d
f (x + µu)− f (x)

µ
u with u ∼ Uni(Sd)

q random directions {ui}qi=1:

∇̂f (x) = d

q

q∑
i=1

f (x + µui )− f (x)
µ

ui with {ui}qi=1
i.i.d.∼ Uni(Sd)
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Research Progress

ZOHT

Curse of dimensionality: An impossibility result [7]

Under standard assumptions (strongly cvx, smooth, noisy obs.):

“∀ algorithm, ∃ fadv s.t. we need more than O(d/ε2) queries to
achieve E[fadv(x̂T )− fadv(x∗)] ≤ ε”

Solutions in litterature: more assumptions on f :

f (x) = g(Ax) with rank(A) << d [5]

sparse/compressible gradients [6]
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Research Progress

ZOHT

Vanilla ZO

Most ZO algorithms [4], [8], [9]:

Algorithm 1: Vanilla ZO

Initialization: η, T , x (0)

Output: xT .
for t = 1, ...,T do

Sample u ∼ Uni(Sd)
∇̂f (xt−1)← d

µ (f (x + µu)− f (x))u;
xt ← xt−1 − η∇̂f (xt−1);

end

Note: just 1 random direction u is sufficient (with proper η)
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Research Progress

ZOHT

Zeroth-Order Hard-Thresholding: Our approach

Consider the non-convex ℓ0 “ball”

min
x s.t.∥x∥0≤k

f (x)

(a) ℓ1 (b) ℓ0
[10]

Why not ℓ1 ? ℓ1 is convex (impossibility result)
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Research Progress

ZOHT

ZOHT: Zeroth-Order Hard-Thresholding

Algorithm 2: SZOHT (simplified)

Initialization: η, T , q, k = O(κ4k∗), x (0)

Output: xT .
for t = 1, ...,T do

for i = 1, ..., q do
Sample ui ∼ Uni(Sd)
∇̂f (xt−1;ui )← d

µ (f (x + µui )− f (x))ui ;

end

∇̂f (xt−1)← 1
q

∑q
i=1 ∇̂f (xt−1;uj)

xt ← Φk(xt−1 − η∇̂f (xt−1)); hard-thresholding
end
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Research Progress

ZOHT

Dimension independence

vanilla ZO: O(d) QC comes from ∥∇̂f (x)−∇f (x)∥2 ≤ O(d)

ZOHT: ∥∇̂F f (x)−∇F f (x)∥2 ≤ O(k) (props. of projections [11])

Figure: Gradient estimate and its projections
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Research Progress

ZOHT

Tuning q: gradient error vs. expansivity

Main difference with vanilla ZO: projection on the ℓ0 ball (Bℓ0,k) is
not non-expansive:

∀y ∈ Rd , x∗ ∈ Bℓ0,k : ∥Φk(y)− x∗∥ ≤ γ∥y − x∗∥

with γ > 1
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Research Progress

ZOHT

Tuning q: gradient error vs. expansivity

Convergence rate:

E∥xt − x∗∥ ≤ (ργ)t ∥x0 − x∗∥+ (·)σ + (·)µ

With η = ν
(4ϵerr+1)L2

, ρ = 1− ν2

(4ϵerr+1)L2
, ϵerr ≤ O(kq ), k ≥

ρ2k∗

(1−ρ2)2

Sufficient: (by inspection) valid q s.t. ργ < 1 : q ≥ 2(3k + 2)
Necessary: minimum q so that ∃ valid k s.t. ργ < 1:

q ≥ 4κ2
√

k∗d

s2
> 1
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Research Progress

ZOHT

Tuning q: gradient error vs. expansivity

(a) f (x) (b) ∥x − x∗∥

Figure: Sensitivity analysis

Toy XP: f (x) = 1
2∥a ⊙ (x − b)∥2, (a and b chosen to have

∥∇f (x∗)∥ small enough). η = 1
(4εF+1) . For q = 1 and 20,

∥x (t) − x∗∥ does not converge.
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Research Progress

ZOHT

Improvements: sampling along a random support

ui ∼ Uni (SS) with S ∼ Uni(
([d ]
s2

)
)

memory efficiency (if distributed learning)

allows to work with “restricted smoothness” only

can improve the condition number ν/L
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Research Progress

ZOHT

Experiments

Asset management [12], (a), (b), (c) :

min
x∈Rd

x⊤Cx

2
(∑d

i=1 xi
)2 + λ

(
min

{∑d
i=1 mi xi∑d
i=1 xi

− r, 0

})2

s.t. ∥x∥0 ≤ k

Few pixels adv. attacks [13], (d), (e), (f) : minδ f (x + δ) such that ∥δ∥0 ≤ k

Comparison with ZSCG [14], RSPGF [15], ZORO [6] (f (x) vs
QC)

(a) port3 (b) port4 (c) port5

(d) MNIST (e) CIFAR (f) Imagenet 16 / 40
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Research Progress

IRKSN

Iterative Regularization with k-support norm: A Dual
Perspective on Hard-Thresholding

Original Goal: Online ℓ0 optimization.
Attempt 1: Modify Online Convex Optimization ([16])

xt+1 = Φk(xt − ηt∇f (xt))

Problem: Could not get sublinear regret
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Research Progress

IRKSN

Dual Perspective on IHT (contd.)

Attempt 2: Dual Averaging[17]/(Lazy) Mirror Descent[18]/Lazy
OCO[16]/Bregman Iterations [19]:

yt+1 = yt − ηt∇f (xt)

xt+1 = Φk(yt+1)

Problem: Φk(·) = ∂ϕ(·) with ϕ(·) = 1
2(∥ · ∥

(k))2 (top-k norm). ϕ
not smooth...(proof cannot work)
But we can take the δ-Moreau smoothing, to get:

ϕδ(·) = (
1

2
( ∥ · ∥sp

k︸ ︷︷ ︸
k-support norm (KSN)

)2 +
1

2
(∥ · ∥22) )∗
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Research Progress

IRKSN

Note on the k-support norm

KSN ball is tightest convex relaxation of ℓ0 and ℓ2 ball:

{x : ∥x∥spk ≤ D} = conv({x : ∥x∥0 ≤ k} ∩ {x : ∥x∥2 ≤ D})
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Research Progress

IRKSN

Dual Perspective on IHT (contd.)

Algorithm becomes:

yt+1 = yt − ηt∇f (xt)

xt+1 = prox 1
2δ
(∥·∥spk )2(

yt+1

δ
)

Some properties: (not just online)

Not really new now (MD/DA/BI, with just new use of KSN)

xt empirically ”almost” sparse (prelim. XPs)

BUT: MD, so convergence to x∗ (maybe not sparse)

For overparam. linear models: implicit bias towards min
KSN2 (+δℓ22) solution

BUT: may still not be k-sparse
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Research Progress

IRKSN

IRKSN

We simplify the problem, to make proofs easier → sparse
recovery:

y δ = Xw∗ + ϵ

,
∥ϵ∥ ≤ δ

Solved by a tweaked version of ADGD [20], solving, with early
stopping

min
x

R(x) s.t. Xw = y δ

with R(w) = F (w) + α
2 ∥w∥2

2 with F (w) = 1−α
2 (∥w∥spk )2
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Research Progress

IRKSN

Algorithm

Algorithm 3: IRKSN

Initialization: v̂0 = ẑ−1 = ẑ0 ∈ Rd , γ = α∥X∥−2, x0 = 1
Output: ŵT

for t = 0, ...,T do
ŵt ← proxα−1F

(
−α−1XT ẑt

)
r̂t ← proxα−1F

(
−α−1XT v̂t

)
ẑt ← v̂t + γ

(
Xr̂t − y δ

)
xt+1 ←

(
1 +

√
1 + 4x2

t

)
/2

v̂t+1 = ẑt + xt−1
xt+1

(ẑt − ẑt−1)

end
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Research Progress

IRKSN

Recovery

Assumption

w∗ k-sparse, supp(w∗) = S ⊂ [d ], Xw∗ = y ,
w∗

S = argminz∈Rk :XSz=y ∥z∥2

max
ℓ∈S̄
|⟨X †

Sxℓ,w
∗
S⟩| < min

j∈S
|⟨X †

Sxj ,w
∗
S⟩|

Theorem (Early Stopping Bound)

∥ŵt −w∗∥2 ≤ atδ + bt−1

with a = 4∥X∥−1 and b =
2∥X∥∥(X⊤

S )†w∗
S∥

α
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Research Progress

IRKSN

Comparison with ℓ1-based recovery

Assumption (Recovery with ℓ1 norm.)

Let w∗ be supported on a support S ⊂ [d ]. w∗ is such that:

1 Xw∗ = y
2 XS is injective

3 maxℓ∈S̄ |⟨X
†
Sxℓ, sgn(w

∗
S)⟩| < 1
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Research Progress

IRKSN

If XS is injective

IRKSN

max
ℓ∈S̄
|⟨X †

Sxℓ,
w∗

S

minj∈S |w∗
S |
⟩| < 1

l1 iter. reg.

max
ℓ∈S̄
|⟨X †

Sxℓ, sgn(w
∗
S)⟩| < 1
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Future research

Variance Reduction

Variance Reduction

VR-SZHT introduced by Xinzhe Yuan:

Algorithm 4: Stochastic variance reduced zeroth-order Hard-
Thresholding (VR-SZHT)

Initialization: η, T , x0, SVRG update frequency m, q, k .
Output: xT .

for r = 1, . . . ,T do

x (0) = x r−1; µ̂ = 1
n

∑n
i=1 ∇̂fi (x (0)); for t = 0, 1, . . . ,m − 1

do
Randomly sample it ∈ {1, 2, . . . , n}; Compute ZO
estimate ∇̂fit (x (t)), ∇̂fit (x (0));
x̄ (t+1) = x (t) − η(∇̂fit (x (t))− ∇̂fit (x (0)) + µ̂);
x (t+1) = ϕk(x̄ (t+1));

end

x r = x (m);
end 26 / 40
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Future research

Variance Reduction

VR-SZHT

Removes need for minimum q: VR can compensate the variance of
gradient estimate
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Future research

Additional Constraints

Additional Constraints

min
x∈Rd

F(x) = 1

n

n∑
i=1

fi (x), s.t. ∥x∥0 ≤ k and x ∈ S. (1)

Useful e.g. in adversarial attacks.
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Future research

Structural Sparsity

Structural sparsity

We may want to enforce constraints of the form:

{x ∈ Rd : ∥xG1∥0 < D1 ∧ ∥xG2∥0 < D2}

xG1 and xG1 : a partition of x into coordinates from a group G1 and
a group G2.
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Future research

Reinforcement learning

Reinforcement learning

Salimans et al. [21]: Evolution Strategies (≈ ZO) very efficient for
RL (esp. distributed)
BUT: dependence on d (d >> 1 for DNNs).
=⇒ Could using ZOHT reduce the dependence in d?
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Future research

Others

Others

Other potential ideas:

Low-rank Matrices
Sparse graphs
Acceleration of ZOHT [22]

Relaxed Assumptions (non-RSC)

Lower bound for ZOO with sparse optima

Non-convex regularization: h(x) = λ(12(∥x∥
sp
k )2 − 1

2∥x∥
2
2)

Figure: Nonconvex penalty based on the k-support norm.

31 / 40



Candidacy Exam

Future research

Others
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Future research

Others
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