Candidacy Exam

William de Vazelhes¹, PhD Candidate Dr. Bin Gu¹, Supervisor Dr. Xiaotong Yuan², External Examiner Dr. Chih-Jen Lin¹, Internal Member Dr. Karthik Nandakumar¹, Internal Member Dr. Zhiqiang Xu¹, Internal Member

¹ Mohamed bin Zayed University of Artificial Intelligence,
 ² Nanjing University of Information Science & Technology

May 11, 2023

1 Introduction

Research Progress
 ZOHT
 IRKSN

3 Future research

- Variance Reduction
- Additional Constraints
- Structural Sparsity
- Reinforcement learning
- Others

	Cand	lidacy	Exam
--	------	--------	------

- Introduction

Introduction

Sparse Optimization:

 $\min_{\|\boldsymbol{x}\|_0 \leq k} f(\boldsymbol{x})$

Applications:

Sparse regression/classification (e.g. gene array data)

Sparse recovery

Main contributions:

- **ZOHT**: condition on number of random directions *q*
- IRKSN: new conditions for linear sparse recovery

Candidacy Exam
Research Progress
∟гонт

Zeroth-Order

 $\min_{\boldsymbol{x}\in\mathbb{R}}f(\boldsymbol{x})$

Gradient descent:

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \eta \nabla f(\mathbf{x}_t)$$

What if we don't know $\nabla f(\cdot)$, but only $f(\cdot)$?

Black-Box Adversarial attacks [1]

x "panda" 57.7% confidence

sign $(\nabla_x J(\theta, x, y))$ "nematode" 8.2% confidence

 $x + \epsilon sign(\nabla_x J(\theta, x, y))$ "gibbon" 99.3 % confidence

Reinforcement learning [2]

-Research Progress └─ ZOHT

Approximate $\nabla f(\mathbf{x})$: two points approximation [3] [4]:

• One random direction **u**:

$$\hat{
abla}f(m{x}) = drac{f(m{x}+\mum{u})-f(m{x})}{\mu}m{u}$$
 with $m{u} \sim {\sf Uni}(\mathbb{S}_d)$

• q random directions $\{u_i\}_{i=1}^q$:

$$\hat{\nabla}f(\boldsymbol{x}) = \frac{d}{q} \sum_{i=1}^{q} \frac{f(\boldsymbol{x} + \mu \boldsymbol{u}_i) - f(\boldsymbol{x})}{\mu} \boldsymbol{u}_i \text{ with } \{\boldsymbol{u}_i\}_{i=1}^{q} \stackrel{\text{i.i.d.}}{\sim} \text{Uni}(\mathbb{S}_d)$$

└─ Research Progress └─ ZOHT

Curse of dimensionality: An impossibility result [7]

Under standard assumptions (strongly cvx, smooth, noisy obs.):

" \forall algorithm, $\exists f_{adv} \ s.t.$ we need more than $O(d/\varepsilon^2)$ queries to achieve $\mathbb{E}[f_{adv}(\hat{\mathbf{x}}_T) - f_{adv}(\mathbf{x}_*)] \leq \varepsilon$ "

Solutions in litterature: more assumptions on *f*:

- $f(\mathbf{x}) = g(\mathbf{A}\mathbf{x})$ with rank $(\mathbf{A}) \ll d$ [5]
- sparse/compressible gradients [6]

└─ Research Progress └─ ZOHT

Vanilla ZO

Most ZO algorithms [4], [8], [9]: Algorithm 1: Vanilla ZO Initialization: η , T, $\mathbf{x}^{(0)}$ Output: \mathbf{x}_T . for t = 1, ..., T do Sample $\mathbf{u} \sim \text{Uni}(\mathbb{S}_d)$ $\hat{\nabla}f(\mathbf{x}_{t-1}) \leftarrow \frac{d}{\mu}(f(\mathbf{x} + \mu \mathbf{u}) - f(\mathbf{x})) \mathbf{u};$ $\mathbf{x}_t \leftarrow \mathbf{x}_{t-1} - \eta \hat{\nabla}f(\mathbf{x}_{t-1});$ end

Note: just **1** random direction \boldsymbol{u} is sufficient (with proper η)

∟гонт

Zeroth-Order Hard-Thresholding: Our approach

Consider the **non-convex** ℓ_0 "ball"

 $\min_{\boldsymbol{x} \text{ s.t.} \|\boldsymbol{x}\|_0 \leq k} f(\boldsymbol{x})$

Why not ℓ_1 ? ℓ_1 is convex (impossibility result)

-Research Progress

ZOHT: Zeroth-Order Hard-Thresholding

Algorithm 2: SZOHT (simplified) Initialization: η , T, q, $k = \mathcal{O}(\kappa^4 k^*)$, $\mathbf{x}^{(0)}$ Output: x_T . for t = 1, ..., T do for i = 1, ..., q do Sample $\boldsymbol{u}_i \sim \text{Uni}(\mathbb{S}_d)$ $\hat{\nabla} f(\mathbf{x}_{t-1}; \mathbf{u}_i) \leftarrow \frac{d}{\mu} (f(\mathbf{x} + \mu \mathbf{u}_i) - f(\mathbf{x})) \mathbf{u}_i;$ end $\hat{\nabla}f(\mathbf{x}_{t-1}) \leftarrow \frac{1}{q} \sum_{i=1}^{q} \hat{\nabla}f(\mathbf{x}_{t-1}; \mathbf{u}_{j})$ $\mathbf{x}_{t} \leftarrow \Phi_{k}(\mathbf{x}_{t-1} - \eta \hat{\nabla}f(\mathbf{x}_{t-1})); \text{ hard-thresholding}$ end

└─ Research Progress └─ ZOHT

Dimension independence

• vanilla ZO: O(d) QC comes from $\|\hat{\nabla}f(\mathbf{x}) - \nabla f(\mathbf{x})\|^2 \le O(d)$ • ZOHT: $\|\hat{\nabla}_F f(\mathbf{x}) - \nabla_F f(\mathbf{x})\|^2 \le O(k)$ (props. of projections [11])

Figure: Gradient estimate and its projections

Tuning q: gradient error vs. expansivity

Main difference with vanilla ZO: projection on the ℓ_0 ball $(\mathcal{B}_{\ell_0,k})$ is not non-expansive:

$$orall oldsymbol{y} \in \mathbb{R}^d, oldsymbol{x}^* \in \mathcal{B}_{\ell_0,k}: \; \left\| \Phi_k(oldsymbol{y}) - oldsymbol{x}^*
ight\| \leq oldsymbol{\gamma} \|oldsymbol{y} - oldsymbol{x}^* \|$$

with $\gamma > 1$

Tuning q: gradient error vs. expansivity

Convergence rate:

$$\mathbb{E}\|\mathbf{x}_t - \mathbf{x}^*\| \le (\rho\gamma)^t \|\mathbf{x}_0 - \mathbf{x}^*\| + (\cdot)\sigma + (\cdot)\mu$$

With $\eta = \frac{\nu}{(4\epsilon_{err}+1)L^2}$, $\rho = 1 - \frac{\nu^2}{(4\epsilon_{err}+1)L^2}$, $\epsilon_{err} \leq O(\frac{k}{q})$, $k \geq \frac{\rho^2 k^*}{(1-\rho^2)^2}$ Sufficient: (by inspection) valid q s.t. $\rho\gamma < 1$: $q \geq 2(3k+2)$ Necessary: minimum q so that \exists valid k s.t. $\rho\gamma < 1$:

$$q \geq 4\kappa^2 \sqrt{rac{k^*d}{s_2}} > 1$$

└─ Research Progress └─ ZOHT

Tuning q: gradient error vs. expansivity

Figure: Sensitivity analysis

Toy XP: $f(\mathbf{x}) = \frac{1}{2} ||\mathbf{a} \odot (\mathbf{x} - \mathbf{b})||^2$, (\mathbf{a} and \mathbf{b} chosen to have $||\nabla f(\mathbf{x}^*)||$ small enough). $\eta = \frac{1}{(4\varepsilon_F + 1)}$. For q = 1 and 20, $||\mathbf{x}^{(t)} - \mathbf{x}^*||$ does not converge.

└─ Research Progress └─ ZOHT

Improvements: sampling along a random support

- $oldsymbol{u}_i \sim {\sf Uni}\left(\mathbb{S}_{oldsymbol{S}}
 ight)$ with $oldsymbol{S} \sim {\sf Uni}(inom{[d]}{s_2})$
 - memory efficiency (if distributed learning)
 - allows to work with "restricted smoothness" only
 - can improve the condition number ν/L

~		-
(and	Idacy	Exam
Cana	naacy	

−Research Progress └─ZOHT

Experiments

■ Asset management [12], (a), (b), (c) :

$$\min_{\mathbf{x}\in\mathbb{R}^d} \frac{\mathbf{x}^\top \mathbf{C} \mathbf{x}}{2\left(\sum_{i=1}^d \mathbf{x}_i\right)^2} + \lambda \left(\min\left\{ \frac{\sum_{i=1}^d \mathbf{m}_i \mathbf{x}_i}{\sum_{i=1}^d \mathbf{x}_i} - \mathbf{r}, \mathbf{0} \right\} \right)^2 \quad \text{s.t.} \quad \|\mathbf{x}\|_0 \le k$$

Few pixels adv. attacks [13], (d), (e), (f) : $\min_{\delta} f(\mathbf{x} + \delta)$ such that $\|\delta\|_{0} \leq k$

 Comparison with ZSCG [14], RSPGF [15], ZORO [6] (f(x) vs QC)

Iterative Regularization with k-support norm: A Dual Perspective on Hard-Thresholding

Original Goal: Online ℓ_0 optimization. **Attempt 1:** Modify Online Convex Optimization ([16])

$$\mathbf{x}_{t+1} = \Phi_{\mathbf{k}}(\mathbf{x}_t - \eta_t \nabla f(\mathbf{x}_t))$$

Problem: Could not get sublinear regret

Dual Perspective on IHT (contd.)

Attempt 2: Dual Averaging[17]/(Lazy) Mirror Descent[18]/Lazy OCO[16]/Bregman Iterations [19]:

$$\begin{aligned} \mathbf{y}_{t+1} &= \mathbf{y}_t - \eta_t \nabla f(\mathbf{x}_t) \\ \mathbf{x}_{t+1} &= \Phi_k(\mathbf{y}_{t+1}) \end{aligned}$$

Problem: $\Phi_k(\cdot) = \partial \phi(\cdot)$ with $\phi(\cdot) = \frac{1}{2}(||\cdot||^{(k)})^2$ (top-k norm). ϕ not smooth...(proof cannot work)

But we can take the δ -Moreau smoothing, to get:

$$\phi_{\delta}(\cdot) = \left(\begin{array}{cc} \frac{1}{2} \left(\begin{array}{c} \parallel \cdot \parallel_{k}^{sp} \end{array}\right)^{2} + \frac{1}{2} \left(\parallel \cdot \parallel_{2}^{2} \right) \end{array}\right)^{*}$$

k-support norm (KSN)

Note on the *k*-support norm

• KSN ball is tightest convex relaxation of ℓ_0 and ℓ_2 ball:

 $\{ \boldsymbol{x} : \| \boldsymbol{x} \|_{k}^{sp} \leq D \} = \operatorname{conv}(\{ \boldsymbol{x} : \| \boldsymbol{x} \|_{0} \leq k \} \cap \{ \boldsymbol{x} : \| \boldsymbol{x} \|_{2} \leq D \})$

Dual Perspective on IHT (contd.)

Algorithm becomes:

$$\begin{aligned} \mathbf{y}_{t+1} &= \mathbf{y}_t - \eta_t \nabla f(\mathbf{x}_t) \\ \mathbf{x}_{t+1} &= \operatorname{prox}_{\frac{1}{2\delta}(\|\cdot\|_k^{sp})^2} (\frac{\mathbf{y}_{t+1}}{\delta}) \end{aligned}$$

Some properties: (not just online)

- Not really new now (MD/DA/BI, with just new use of KSN)
- *x_t* empirically "almost" sparse (prelim. XPs)
- BUT: MD, so convergence to **x**^{*} (maybe not sparse)
- **For overparam. linear models**: **implicit bias** towards min KSN^2 ($+\delta \ell_2^2$) solution
- BUT: may still not be *k*-sparse

Candidacy Exam
Research Progress
LIRKSN

IRKSN

,

We simplify the problem, to make proofs easier \rightarrow **sparse** recovery:

$$oldsymbol{y}^{\delta} = oldsymbol{X}oldsymbol{w}^* + oldsymbol{\epsilon}$$

 $\|\boldsymbol{\epsilon}\| \leq \delta$

Solved by a tweaked version of ADGD [20], solving, with early stopping

$$\min_{\boldsymbol{x}} R(\boldsymbol{x}) \text{ s.t. } \boldsymbol{X} \boldsymbol{w} = \boldsymbol{y}^{\delta}$$

with $R(\boldsymbol{w}) = F(\boldsymbol{w}) + \frac{\alpha}{2} \|\boldsymbol{w}\|_2^2$ with $F(\boldsymbol{w}) = \frac{1-\alpha}{2} (\|\boldsymbol{w}\|_k^{sp})^2$

Algorithm

Algorithm 3: IRKSN Initialization: $\hat{\mathbf{v}}_0 = \hat{\mathbf{z}}_{-1} = \hat{\mathbf{z}}_0 \in \mathbb{R}^d, \gamma = \alpha \|\mathbf{X}\|^{-2}, \mathbf{x}_0 = 1$ Output: \hat{w}_{T} for t = 0, ..., T do $\hat{\boldsymbol{w}}_{t} \leftarrow \operatorname{prox}_{\alpha^{-1}F} \left(-\alpha^{-1} \boldsymbol{X}^{T} \hat{\boldsymbol{z}}_{t} \right)$ $\hat{\mathbf{r}}_t \leftarrow \operatorname{prox}_{\alpha^{-1}F} \left(-\alpha^{-1} \mathbf{X}^T \hat{\mathbf{v}}_t \right)$ $\hat{\boldsymbol{z}}_t \leftarrow \hat{\boldsymbol{v}}_t + \gamma \left(\boldsymbol{X} \hat{\boldsymbol{r}}_t - \boldsymbol{y}^{\delta} \right)$ $\mathbf{x}_{t+1} \leftarrow \left(1 + \sqrt{1 + 4\mathbf{x}_t^2}\right)/2$ $\hat{v}_{t+1} = \hat{z}_t + \frac{x_t - 1}{x_{t+1}} (\hat{z}_t - \hat{z}_{t-1})$

end

Recovery

Assumption

$$\begin{split} & \boldsymbol{w}^* \ k\text{-sparse, supp}(\boldsymbol{w}^*) = S \subset [d], \ \boldsymbol{X} \boldsymbol{w}^* = \boldsymbol{y}, \\ & \boldsymbol{w}^*_S = \arg\min_{\boldsymbol{z} \in \mathbb{R}^k: \boldsymbol{X}_S \boldsymbol{z} = \boldsymbol{y}} \|\boldsymbol{z}\|_2 \end{split}$$

$$\max_{\ell \in \bar{S}} |\langle \pmb{X}_{S}^{\dagger} \pmb{x}_{\ell}, \pmb{w}_{S}^{*} \rangle| < \min_{j \in S} |\langle \pmb{X}_{S}^{\dagger} \pmb{x}_{j}, \pmb{w}_{S}^{*} \rangle|$$

Theorem (Early Stopping Bound)

$$\begin{aligned} \|\hat{\boldsymbol{w}}_t - \boldsymbol{w}^*\|_2 &\leq \mathsf{at}\delta + bt^{-1} \end{aligned}$$
with $\mathbf{a} = 4 \|\boldsymbol{X}\|^{-1}$ and $\mathbf{b} = \frac{2\|\boldsymbol{X}\|\|(\boldsymbol{X}_S^{\top})^{\dagger}\boldsymbol{w}_S^*\|}{\alpha}$

Comparison with ℓ_1 -based recovery

Assumption (Recovery with ℓ_1 norm.)

Let w^* be supported on a support $S \subset [d]$. w^* is such that:

- $1 Xw^* = y$
- **2** X_S is injective
- 3 max $_{\ell\in\bar{\mathcal{S}}}|\langle \pmb{X}_{\mathcal{S}}^{\dagger}\pmb{x}_{\ell}, \mathsf{sgn}(\pmb{w}_{\mathcal{S}}^{*})
 angle| < 1$

IRKSN

I1 iter. reg.

$$\max_{\ell \in \bar{S}} |\langle \boldsymbol{X}_{S}^{\dagger} \boldsymbol{x}_{\ell}, \frac{\boldsymbol{w}_{S}^{*}}{\min_{j \in S} |\boldsymbol{w}_{S}^{*}|} \rangle| < 1$$

$$\max_{\ell \in \bar{S}} |\langle \boldsymbol{X}_{S}^{\dagger} \boldsymbol{x}_{\ell}, \operatorname{sgn}(\boldsymbol{w}_{S}^{*}) \rangle| < 1$$

-Future research

└─ Variance Reduction

Variance Reduction

VR-SZHT introduced by Xinzhe Yuan:

Algorithm 4: Stochastic variance reduced zeroth-order Hard-Thresholding (VR-SZHT)

Initialization: η , T, x^0 , SVRG update frequency m, q, k. **Output:** x^T .

for
$$r = 1, ..., T$$
 do
 $\mathbf{x}^{(0)} = \mathbf{x}^{r-1}; \ \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} \hat{\nabla} f_i(\mathbf{x}^{(0)}); \text{ for } t = 0, 1, ..., m-1$
do
Randomly sample $i_t \in \{1, 2, ..., n\};$ Compute ZO
estimate $\hat{\nabla} f_{i_t}(\mathbf{x}^{(t)}), \ \hat{\nabla} f_{i_t}(\mathbf{x}^{(0)});$
 $\bar{\mathbf{x}}^{(t+1)} = \mathbf{x}^{(t)} - \eta(\hat{\nabla} f_{i_t}(\mathbf{x}^{(t)}) - \hat{\nabla} f_{i_t}(\mathbf{x}^{(0)}) + \hat{\mu});$
 $\mathbf{x}^{(t+1)} = \phi_k(\bar{\mathbf{x}}^{(t+1)});$
end
 $\mathbf{x}^r = \mathbf{x}^{(m)};$

Candidacy Exam

Future research

└─Variance Reduction

Removes need for minimum q: VR can compensate the variance of gradient estimate

Candidacy Exam

-Future research

-Additional Constraints

Additional Constraints

$$\min_{\boldsymbol{x}\in\mathbb{R}^d}\mathcal{F}(\boldsymbol{x}) = \frac{1}{n}\sum_{i=1}^n f_i(\boldsymbol{x}), \quad s.t. \|\boldsymbol{x}\|_0 \leq k \text{ and } \boldsymbol{x}\in\mathcal{S}.$$
(1)

Useful e.g. in adversarial attacks.

-Future research

LStructural Sparsity

Structural sparsity

We may want to enforce constraints of the form:

$$\{ \boldsymbol{x} \in \mathbb{R}^d : \| \boldsymbol{x}_{\mathcal{G}_1} \|_0 < D_1 \wedge \| \boldsymbol{x}_{\mathcal{G}_2} \|_0 < D_2 \}$$

 $x_{\mathcal{G}_1}$ and $x_{\mathcal{G}_1}$: a partition of x into coordinates from a group \mathcal{G}_1 and a group \mathcal{G}_2 .

-Future research

Reinforcement learning

Reinforcement learning

Salimans et al. [21]: Evolution Strategies (\approx ZO) very efficient for RL (esp. distributed)

BUT: dependence on d (d >> 1 for DNNs).

 \implies Could using ZOHT reduce the dependence in d?

Figure 1: Time to reach a score of 6000 on 3D Humanoid with different number of CPU cores. Experiments are repeated 7 times and median time is reported.

~			-
(and	id a	CV	-vam
Canto	luuu	⊂y ∣	

— Future research

—Others

Others

Other potential ideas:

- Low-rank Matrices
- Sparse graphs
- Acceleration of ZOHT [22]
- Relaxed Assumptions (non-RSC)
- Lower bound for ZOO with sparse optima
- Non-convex regularization: $h(\mathbf{x}) = \lambda (\frac{1}{2} (\|\mathbf{x}\|_k^{sp})^2 \frac{1}{2} \|\mathbf{x}\|_2^2)$

Figure: Nonconvex penalty based on the *k*-support norm.

Candidacy Exam			
-Future research			
Others			

QA

(Candidacy	Exam

L_Others

References I

- I. J. Goodfellow, J. Shlens, and C. Szegedy, "Explaining and harnessing adversarial examples," arXiv preprint arXiv:1412.6572, 2014.
- [2] V. Mnih, K. Kavukcuoglu, D. Silver, et al., "Playing atari with deep reinforcement learning," arXiv preprint arXiv:1312.5602, 2013.
- [3] S. Liu, P.-Y. Chen, B. Kailkhura, G. Zhang, A. O. Hero III, and P. K. Varshney, "A primer on zeroth-order optimization in signal processing and machine learning: Principals, recent advances, and applications," *IEEE Signal Processing Magazine*, vol. 37, no. 5, pp. 43–54, 2020.

Candidacy	Exam
Future	research

└─ Others

References II

- [4] Y. Nesterov and V. Spokoiny, "Random gradient-free minimization of convex functions," *Foundations of Computational Mathematics*, vol. 17, no. 2, pp. 527–566, 2017.
- [5] D. Golovin, J. Karro, G. Kochanski, C. Lee, X. Song, and Q. Zhang, "Gradientless descent: High-dimensional zeroth-order optimization," in *International Conference on Learning Representations*, 2019.
- [6] H. Cai, D. McKenzie, W. Yin, and Z. Zhang, "Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling," *SIAM Journal on Optimization*, vol. 32, no. 2, pp. 687–714, 2022.

Candio	lacy	Exam

-Future researc

References III

- [7] K. G. Jamieson, R. Nowak, and B. Recht, "Query complexity of derivative-free optimization," in Advances in Neural Information Processing Systems, vol. 25, 2012.
- [8] J. C. Duchi, M. I. Jordan, M. J. Wainwright, and A. Wibisono, "Optimal rates for zero-order convex optimization: The power of two function evaluations," *IEEE Transactions on Information Theory*, vol. 61, no. 5, pp. 2788–2806, 2015.
- [9] K. Balasubramanian and S. Ghadimi, "Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points," *Foundations of Computational Mathematics*, pp. 1–42, 2021.

Candidacy Exam	
Future research	

└─ Others

References IV

- [10] J. Francis, B. Madathil, S. N. George, and S. George, "A robust tensor-based submodule clustering for imaging data using I 1 2 regularization and simultaneous noise recovery via sparse and low rank decomposition approach," *Journal of Imaging*, vol. 7, no. 12, p. 279, 2021.
- [11] S. Sykora, "Surface integrals over n-dimensional spheres," Stan's Library, no. Volume I, May 2005. DOI: 10.3247/sl1math05.002.
- [12] T.-J. Chang, N. Meade, J. E. Beasley, and Y. M. Sharaiha, "Heuristics for cardinality constrained portfolio optimisation," *Computers & Operations Research*, vol. 27, no. 13, pp. 1271–1302, 2000.

Candidacy Exam		
-Future research		
L Others		

References V

- [13] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, "Zoo: Zeroth order optimization based black-box attacks to deep neural networks without training substitute models," in *Proceedings of the 10th ACM workshop on artificial intelligence and security*, 2017, pp. 15–26.
- [14] K. Balasubramanian and S. Ghadimi, "Zeroth-order (non)-convex stochastic optimization via conditional gradient and gradient updates," in Advances in Neural Information Processing Systems, vol. 31, 2018.

Cand	idacy	Exam	

– Future researc

└─ Others

References VI

- [15] S. Ghadimi, G. Lan, and H. Zhang, "Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization," *Mathematical Programming*, vol. 155, no. 1, pp. 267–305, 2016.
- [16] M. Zinkevich, "Online convex programming and generalized infinitesimal gradient ascent," in *Proceedings of the 20th international conference on machine learning (icml-03)*, 2003, pp. 928–936.
- [17] Y. Nesterov, "Primal-dual subgradient methods for convex problems," *Mathematical programming*, vol. 120, no. 1, pp. 221–259, 2009.

-Future research

└─ Others

References VII

- [18] S. Bubeck *et al.*, "Convex optimization: Algorithms and complexity," *Foundations and Trends* (*R*) *in Machine Learning*, vol. 8, no. 3-4, pp. 231–357, 2015.
- [19] L. Bungert, T. Roith, D. Tenbrinck, and M. Burger, "A bregman learning framework for sparse neural networks," *Journal of Machine Learning Research*, vol. 23, no. 192, pp. 1–43, 2022.
- [20] S. Matet, L. Rosasco, S. Villa, and B. L. Vu, "Don't relax: Early stopping for convex regularization," arXiv preprint arXiv:1707.05422, 2017.

-Future research

Others

References VIII

- [21] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, "Evolution strategies as a scalable alternative to reinforcement learning," arXiv preprint arXiv:1703.03864, 2017.
- [22] K. Axiotis and M. Sviridenko, "Iterative hard thresholding with adaptive regularization: Sparser solutions without sacrificing runtime," in *International Conference on Machine Learning*, PMLR, 2022, pp. 1175–1197.