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Problem

2SP and Three-Point Lemma

min R(w), st. ||wl|ly <k and w €T
wERP

Related Works and Overview of Contributions
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Table 1. Comparison of results for Iterative Hard Thresholding with /without additional constraints. ' S: symmetric convex sets being sign-free or non-negative 1 y : l T (’U}J)
[1], A: k-support preserving sets. * If a paper reports both |jw — w|| and R(w) — R(w), we report only the latter. T": time index of the w returned by the —1 1 1 1
method (e.g. 1" = arg minc;7) R(w;) ). w: k-sparse vector in I'. A: System error (non-vanishing term which depends on the gradient at optimality (e.g.
E;||VR;(w)||, (see corresponding references))). *: x, = 5—55 and Ky = Ly—i' (cf. corresponding refs. for defs. of s and s’). * SM: Lipschitz-smooth, D:
Deterministic. S: Stochastic, Z: Zeroth-Order, L: Lipschitz continuous. ®. Notably, we could eliminate A from [2]. .
Reference i Convergence”’ k Setting’ -1 -1
3] RY R(w;) < R(w) + ¢ O(k2k) D, RSS, RSC
4] R4 Ew: —w| <&+ O(A) O(k2k) S, RSS, RSC
5] R ER("‘UT) < R(w) + ¢+ O(A) Q(’fgk) 5, RS5, RSC Convex projection: Hard-thresholding:
6 R¢ ER(w;) < R(w) + O(kzk) S, RSS, RSC _ . _ .
o i (wy) < Rw) + ¢ ) | [ — w12 > [Jw — Ty (w) |2 + [T (w) — ]2 [Hp(w) — w]2< [l — ]2 (1~ VB) [Hy(w) — w2
2] R Ellws —w| <e+O0(u)+ O(A)  Q(ryk) S, Z, RSS', RSC
1], [7] res local convergence - D, SM
8] {0 ball around 0 local convergence - 5, Z, L Lemma: Constrained (- Three-Point Suppose that I is k-support preserving. Consider w,w € R? with ||w|y < k and w € T
21. . T
IHT-2SP Ce A R (wT) < (14 20)R(w) + 0 (%) D. RSS. RSC Then the following holds for any £ > k: )
] ] k
27 [k - 2 < — wl|? — |11k — wl|? — wl|?, with 8 := =.
HSG-HT-2SP T'c A ER(w;) < (1+2p)R(w) +¢ O (%“) S, RSS, RSC T () = wl|® < flew —|[* — 1T (w) — @+ /B[ H(w) — @I, with § =7
HZO-HT RY E[R(wz) — R(w)] <e+O0(u)*  Q(s%k) Z,RSS', RSC
2k
HZO-HT-2SP e A ER(’UJTA) < (14+2p)R(w)+ec+O(u) (/{;/2 ) Z, RSS’, RSC »
w
w
The Two-Step Projection (2SP) Algorithm and Support Preserving Sets M%(w)
Algorithm 1 Deterministic IHT with extra constraints (IHT-2SP) -1 1 ,
Initialization: wy: initial value, n: learning rate, 1": number of iterations
t=1to T | r
wy = i (wi—y — VR (wi1)) —
Output: wp

Figure 1. Support-preserving set and two-step projection (d = 2,k = 1).

Convergence Rate

Theorem: With R (Lg, s)-RSS and (vs, s)-RSC with s = 2k, R non-negative (w.l.o.g.), [" k-support preserving, n = LLS w any

_ 272 2
k-sparse vector, p € (0, %] k> 4(1;2@)2 Lsk. Then for any € > 0, for T > [5—; log ((Ls—g;zlivg)—w >—‘ +1=0O(ks 10%(%»' the

iterates of I[HT-2SP satisfy:

min R (wy) < (14 2p)R(w) + €.
te|T)
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