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Problem

min
w∈Rp

R(w), s.t. ∥w∥0 ≤ k and w ∈ Γ. (1)

Related Works and Overview of Contributions

Table 1. Comparison of results for Iterative Hard Thresholding with/without additional constraints. 1 S: symmetric convex sets being sign-free or non-negative
[1], A: k-support preserving sets. 2 If a paper reports both ∥w − w̄∥ and R(w)−R(w̄), we report only the latter. T̂ : time index of the w returned by the
method (e.g. T̂ = arg mint∈[T ] R(wt) ). w̄: k̄-sparse vector in Γ. ∆: System error (non-vanishing term which depends on the gradient at optimality (e.g.
Ei∥∇Ri(w̄)∥, (see corresponding references))). 4: κs = Ls

νs
and κs′ =

Ls′
νs

(cf. corresponding refs. for defs. of s and s′). 3 SM: Lipschitz-smooth, D:
Deterministic. S: Stochastic, Z: Zeroth-Order, L: Lipschitz continuous. ♣: Notably, we could eliminate ∆ from [2].

Reference Γ1 Convergence2 k Setting3

[3] Rd R(w
T̂

) ≤ R(w̄) + ε Ω(κ2
sk̄) D, RSS, RSC

[4] Rd E∥w
T̂
− w̄∥ ≤ ε +O (∆) Ω(κ2

sk̄) S, RSS, RSC
[5] Rd ER(w

T̂
) ≤ R(w̄) + ε +O(∆) Ω(κ2

sk̄) S, RSS, RSC
[6] Rd ER(w

T̂
) ≤ R(w̄) + ε Ω(κ2

sk̄) S, RSS, RSC
[2] Rd E∥w

T̂
− w̄∥ ≤ ε +O(µ) +O (∆) Ω(κ4

s′k̄) S, Z, RSS’, RSC
[1], [7] Γ ∈ S local convergence - D, SM

[8] ℓ∞ ball around 0 local convergence - S, Z, L

IHT-2SP Γ ∈ A R
(

w
T̂

)
≤ (1 + 2ρ)R(w̄) + ε Ω

(
κ2

sk̄
ρ2

)
D, RSS, RSC

HSG-HT-2SP Γ ∈ A ER(w
T̂

) ≤ (1 + 2ρ)R(w̄) + ε Ω
(

κ2
sk̄
ρ2

)
S, RSS, RSC

HZO-HT Rd E[R(w
T̂

)−R(w̄)] ≤ ε +O(µ)♣ Ω(κ2
s′k̄) Z, RSS’, RSC

HZO-HT-2SP Γ ∈ A ER(w
T̂

) ≤ (1 + 2ρ)R(w̄) + ε +O(µ) Ω
(

κ2
s′k̄

ρ2

)
Z, RSS’, RSC

The Two-Step Projection (2SP) Algorithm and Support Preserving Sets
Algorithm 1 Deterministic IHT with extra constraints (IHT-2SP)
Initialization: w0: initial value, η: learning rate, T : number of iterations
t = 1 to T
wt← Π̄k

Γ(wt−1 − η∇R(wt−1))
Output: wT

Γ

×w

×
Π̄k

Γ(w)
×Hk(w)

Figure 1. Support-preserving set and two-step projection (d = 2, k = 1).

Definition: Γ ⊆ Rd is k-support-preserving , i.e. it is convex and for any w ∈ Rd such that ∥w∥0 ≤ k, supp(ΠΓ(w)) ⊆ supp(w).

2SP and Three-Point Lemma
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Convex projection:
∥w − w̄∥2 ≥ ∥w − ΠΓ(w)∥2 + ∥ΠΓ(w)− w̄∥2
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Hard-thresholding:
∥Hk(w)−w∥2≤ ∥w − w̄∥2 −

(
1−
√

β
)
∥Hk(w)− w̄∥2

Lemma: Constrained ℓ0-Three-Point Suppose that Γ is k-support preserving. Consider w, w̄ ∈ Rp with ∥w̄∥0 ≤ k̄ and w̄ ∈ Γ.
Then the following holds for any k ≥ k̄:

∥Π̄k
Γ (w)−w∥2 ≤ ∥w − w̄∥2 − ∥Π̄k

Γ (w)− w̄∥2 +
√

β∥Hk(w)− w̄∥2, with β := k̄

k
.
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Convergence Rate

Theorem: With R (Ls, s)-RSS and (νs, s)-RSC with s = 2k, R non-negative (w.l.o.g.), Γ k-support preserving, η = 1
Ls

, w̄ any

k̄-sparse vector, ρ ∈ (0, 1
2], k ≥ 4(1−ρ)2L2

s
ρ2ν2

s
k̄. Then for any ε > 0, for T ≥

⌈
Ls
νs

log
(

(Ls−νs)∥w0−w̄∥2
2ε(1−ρ)

)⌉
+ 1 = O(κs log(1

ε)), the
iterates of IHT-2SP satisfy:

min
t∈[T ]

R (wt) ≤ (1 + 2ρ)R(w̄) + ε.
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