Zeroth-Order Regularized Optimization (ZORO)

William de Vazelhes

Overleaf

2021

1. Introduction on ZO: Table of Contents

- 1. Introduction on ZO:
- 2. Curse of dimensionality for ZO
- 3. ZORO:
- 4. ZO-BCD:
- 5. Other approaches:

1. Introduction on ZO: Zeroth-order optimization

Gradient descent:

$$x_{k+1} = x_k - \gamma \nabla f(x_k)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

What if we don't know ∇f , but only f?

1. Introduction on ZO: Applications

Black-Box Adversarial attacks

from:https://arxiv.org/abs/1412.6572

Reinforcement learning

from:https://www.cs.toronto.edu/ vmnih/docs/dqn.pdf

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

1. Introduction on ZO: Idea to approximate the gradient

Idea: approximate the gradient using using finite differences coordinate-wise, e.g. with $u_i = (0, ..., \overset{i}{1}, ..., 0)$.

$$(\hat{\nabla}f(x))_i = \frac{f(x+\mu u_i) - f(x)}{\mu} \tag{1}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

1. Introduction on ZO: Two points approximation

(from Liu et al. (2020), and

https://scholar.harvard.edu/files/yujietang/files/slides_2019_zero-order_opt_tutorial.pdf)

$$\hat{
abla}f(x) = d \frac{f(m{x} + \mu m{u}) - f(x)}{\mu} m{u}$$
 with $m{u} \sim \text{Uni}(\mathbb{S}_{n-1})$

Unbiased, w.r.t a smoothed version of f:

$$\mathbb{E}_{u\sim p}\left[\hat{\nabla}f(x)\right] = \nabla f_{\mu}(x)$$

with

$$f_{\mu}(\mathbf{x}) \triangleq \mathbb{E}_{u \sim \mathsf{Uni}(\mathbb{B}_n)} \left[\hat{\nabla} f(\mathbf{x} + \mu \mathbf{u}) \right]$$

1. Introduction on ZO: Noisy observations

Generally, in ZO, we don't observe f directly but a noisy version of f:

 $E_f(x,\xi)$

noise: ξ noise can be additive or not, bounded variance/magnitude, zero mean or not Examples:

physical simulation, reinforcement learning (noisy rewards)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

bi-level optimization: inner problem is solved inexactly

1. Introduction on ZO: Applied to many settings, with many techniques

- Many settings:
 - Stochastic/Deterministic
 - Convex or not, Smooth, Strongly Convex...
- Many techniques:
 - Variance reduction
 - Frank-Wolfe, Proximal, Coordinate descent...

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

1. Introduction on ZO: Comparison of ZO algorithms

https://arxiv.org/pdf/2106.02958.pdf#page=5

2. Curse of dimensionality for ZO Curse of dimensionality for ZO

Number of operations: We see in the table above that there is often a O(d) factor → impractical for large d

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

2. Curse of dimensionality for ZO Curse of dimensionality for ZO

Number of operations: We see in the table above that there is often a O(d) factor → impractical for large d

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Can we do better ?

2. Curse of dimensionality for ZO Curse of dimensionality for ZO

Number of operations: We see in the table above that there is often a O(d) factor → impractical for large d

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Can we do better ?
- ▶ Not without assumptions: Jamieson et al. (2012)

2. Curse of dimensionality for ZO An impossibility result

Jamieson et al. (2012) "Query Complexity of Derivative-Free Optimization"

F_{τ,L,B}: class of **all** the *τ* strongly convex functions, *L*-Lipschitz, defined on convex set *B* ⊂ ℝ^d, with noisy observations: *E_f(x) = f(x) + w*, ℝ[w] = 0, ℝ[w²] = σ²:

• If $d \ge 8$ and sufficiently large T:

$$\inf_{\hat{x}^T} \sup_{f \in \mathcal{F}_{\tau,L,\mathcal{B}}} \mathbb{E}[f(\hat{x}^T) - f(x_f^*)] \ge c \left(\frac{d\sigma^2}{T}\right)^{\frac{1}{2}}$$

c depends on the oracle and function class parameters + geometry of \mathcal{B} , but is independent of \mathcal{T} and n.

 \implies cannot optimize in less than $O(d/\epsilon^2)$ iterations

(because
$$\epsilon \ge C \frac{\sqrt{d}}{\sqrt{T}} \implies T \ge O(\frac{d}{\epsilon^2})$$
)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

2. Curse of dimensionality for ZO Doing better: restricting the class of functions

- Let's make some assumptions
- ZORO Cai et al. (2020) (Zeroth Order Regularized Optimization Method): assumes the gradients are either:

• s sparse:
$$(\forall x \in \mathbb{R}^d : ||\nabla f(x)||_0 \le s)$$

- or: compressible: $|\nabla f(x)|_{(i)} \leq i^{-1/p} ||\nabla f(x)||_2, p \in (0, 1)$
- Also: $||\nabla^2 f(x)||_1 \le H$, *L* smooth, noisy oracle $E_f = f(x) + \xi$, $|\xi| < \sigma$, *f* coercive, ∇f coercive

• conv. rate in $\mathcal{O}(s \log(d))$!

3. ZORO: Are those assumptions verified ?

Figure 1: Sorted gradient components at 100 random points in real-world optimization problems. Such decays indicate the gradients are compressible.

Figure 2: Sorted Hessian entries at 100 random points in real-world optimization problems. Such decays indicate the Hessians are weakly sparse. Note that the asset management problem has fixed Hessian at all points, thus there is no variance.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

3. ZORO: ZORO

Idea: use compressed sensing to estimate $\nabla f(x)$: For μ small enough (Taylor expansion), with direction z_i (assume unit norm here):

$$\frac{f(x+\mu z_i)-f(x)}{\mu}\approx z_i^T\nabla f(x)$$

so, for *n* directions ($n \ll d$):

$$y \triangleq \begin{bmatrix} \frac{f(x+\mu z_1)-f(x)}{\mu} \\ \frac{f(x+\mu z_2)-f(x)}{\mu} \\ \vdots \\ \frac{f(x+\mu z_n)-f(x)}{\mu} \end{bmatrix} \approx Z^T \nabla f(x)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

3. ZORO: ZORO

Idea: use compressed sensing to estimate $\nabla f(x)$: For μ small enough (Taylor expansion), with direction z_i (assume unit norm here):

$$\frac{f(x+\mu z_i)-f(x)}{\mu}\approx z_i^T\nabla f(x)$$

so, for *n* directions $(n \ll d)$:

$$y \triangleq \begin{bmatrix} \frac{f(x+\mu z_1) - f(x)}{\mu} \\ \frac{f(x+\mu z_2) - f(x)}{\mu} \\ \vdots \\ \frac{f(x+\mu z_n) - f(x)}{\mu} \end{bmatrix} \approx Z^T \nabla f(x)$$

Inverse problem: We observe $y = Z^T \nabla f(x) \rightarrow$ What is a good estimate of $\nabla f(x)$?

3. ZORO: ZORO

Idea: use compressed sensing to estimate $\nabla f(x)$: For μ small enough (Taylor expansion), with direction z_i (assume unit norm here):

$$\frac{f(x+\mu z_i)-f(x)}{\mu}\approx z_i^T\nabla f(x)$$

so, for *n* directions $(n \ll d)$:

$$y \triangleq \begin{bmatrix} \frac{f(x+\mu z_1)-f(x)}{\mu} \\ \frac{f(x+\mu z_2)-f(x)}{\mu} \\ \vdots \\ \frac{f(x+\mu z_n)-f(x)}{\mu} \end{bmatrix} \approx Z^T \nabla f(x)$$

Inverse problem: We observe $y = Z^T \nabla f(x) \rightarrow$ What is a good estimate of $\nabla f(x)$?

Answer:

$$\hat{\nabla}f(x) = \arg\min_{g/||g||_0 \le s} ||Z^T g - y||_2$$

3. ZORO: Algorithm

Algorithm 1 ZORO

1: **Input:** x_0 : initial point; s: gradient sparsity level; α : step size; δ : query radius, K: number of iterations. 2: $m \leftarrow b_1 s \log(d/s)$ where b_1 is as in Theorem 2.2 of ZORO paper. Typically, $b_1 \approx 1$ is appropriate 3: $z_1, \ldots, z_m \leftarrow \text{i.i.d.}$ Rademacher random vectors 4: for k = 0 to K do for i = 1 to m do 5: $y_i \leftarrow (f(x + \delta z_i) - f(x))/\delta$ 6: 7: end for 8: $\mathbf{y} \leftarrow \frac{1}{\sqrt{m}} [y_1, \dots, y_m]^\top$ $Z \leftarrow \frac{1}{\sqrt{m}} [z_1, \ldots, z_m]^\top$ 9: $\hat{\mathbf{g}}_k \approx \arg\min_{\|\mathbf{g}\|_0 < s} \|Z\mathbf{g} - \mathbf{y}\|_2$ by CoSaMP 10: $x_{k+1} \leftarrow x_k - \alpha \hat{g}_k$ 11: 12: end for 13: **Output:** x_{K} : minimizer of the function.

3. ZORO: Query complexity, compressible gradients

► f convex

stepsize: $\alpha = 1/L$, s large enough s.t. $b_4 s^{1/2-1/p} \leq 0.35$ if $\epsilon > b_3 R \sqrt{2\sigma H/(1-8\psi^2)}$ ZORO finds ϵ -optimal solution in:

$$O\left(s\log(d)\frac{1}{\epsilon}\right)$$

with probability:

$$1-2(s/d)^{b_2s}$$

► f restricted *v*-SC

ZORO finds ϵ -optimal solution in:

$$O\left(s\log(d)\log(rac{1}{\epsilon})
ight)$$

with probability:

$$1-2(s/d)^{b_2s}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

4. ZO-BCD: ZO-BCD, exactly sparse gradients

Separate the features into J blocks

At each iteration:

- 1) select a block i
- 2) approximate the gradient along this block using sparse recovery (like ZORO)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Do a gradient step

4. ZO-BCD: Even further improvements ZO-BCD-RC

Additional techniques:

- Make randomized blocks \rightarrow to divide and conquer the sparsity
- Reuse the same Rademacher vectors for each block at each iteration
- Don't sample d/J Rademacher, take random columns from a circulant matrix created by one vector

$$C(v) = \begin{pmatrix} v_1 & v_2 & \cdots & v_{d/J} \\ v_{d/J} & v_1 & \cdots & v_{d/J-1} \\ \vdots & \ddots & \ddots & \vdots \\ v_2 & \cdots & v_{d/J} & v_1 \end{pmatrix}.$$
 (2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

4. ZO-BCD: Convergence rate

stepsize: $\alpha = 1/L$, query radius $\delta = 2\sqrt{\sigma/H}$, assume $_{4\rho^{4n} + \frac{16\tau^2\sigma H}{c_1L_{max}} < 1}$, $s > s_{\text{exact}}$, choose number of CoSaMP n and ϵ such that: $\frac{c_1}{2} \left(2\rho^{2n} + \sqrt{\rho^n + \frac{16\tau^2\sigma H}{c_1CL_{max}}} \right) < \epsilon < f(x_0 - f^*)$

- With probability at least $1 - \zeta - \mathcal{O}\left(\frac{j^2}{\epsilon} \exp(\frac{-0.01_{\text{sexact}}}{3J})\right)$, ZO-BCD-R finds an ϵ -solution in $\tilde{\mathcal{O}}(s/\epsilon)$ queries, using $\tilde{\mathcal{O}}(sd/J^2)$ FLOPS per iteration and $\tilde{\mathcal{O}}(sd/J)$ total memory.

- With probability at least $1 - \tilde{\mathcal{O}}\left(\frac{J^2}{\epsilon}\exp(\frac{-0.01s_{\text{exact}}}{3J})\right) - (d/J)^{\log(d/J)\log^2(4.4s/J)}$,

ZO-BCD-RC finds an ϵ -solution in $\tilde{\mathcal{O}}(s/\epsilon)$ queries, requiring $\tilde{\mathcal{O}}(d/J)$ FLOPS per iteration and $\mathcal{O}(d/J)$ total memory.

5. Other approaches: Results on sparsity

- Wang et al. (2018): one of the first works, that achieved log(d) dependence on the dimension. Stronger assumption: s-sparsity of the gradient
- Liu and Yang (2021): less assumptions (only approximate sparsity of the solution), worse bounds, but still logarithmic in d

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

5. Other approaches: Comparison

Table: Comparison of query complexity results for techniques using sparsity (taken from Liu and Yang (2021)): $D_0 := ||x^1 - x^*||^2$ Although $D_0 \sim \mathcal{O}(d)$ in general, it can be $\mathcal{O}(s)$ when x^* has only s-many nonzero components and the initial solution is chosen to be sparse (e.g., the initial solution can be the all-zero vector).

Algorithms	Complexity	Assumption
Wang et al. (2018)	$\mathcal{O}\left(rac{s(\ln d)^3}{\epsilon^3} ight)$	s-sparse gradient Bounded 1-norm of gradient Bounded 1-norm of Hessian Additive randomness Function sparsity $\ x^*\ _1 \leq R$
Cai et al. (2020) (ZORO)	$\mathcal{O}\left(s \cdot \ln d \cdot \ln\left(\frac{1}{\epsilon}\right)\right)$	Compressible gradient Bounded 1-norm of Hessian Restricted strong convexity Additive randomness Coercivity
Balasubramanian and Ghadimi (2018)	$ \mathcal{O}\left(\left(\frac{D_0s^2}{\epsilon} + \frac{D_0s}{\epsilon^2}\right)(\ln d)^2\right) \\ = \mathcal{O}\left(\left(\frac{s^3}{\epsilon} + \frac{s^2}{\epsilon^2}\right)(\ln d)^2\right) $	<i>s</i> -sparse gradient x* is <i>s</i> -sparse
Liu and Yang (2021)	$\mathcal{O}\left(\frac{\left(D_{0}+R\right)^{3}\ln d}{\epsilon^{3}}\right)$	$\ \boldsymbol{x}^*\ _1 \leq R$
Liu and Yang (2021)	$\mathcal{O}\left(\frac{(s+D_0+R)^2 \ln d}{\epsilon^2}\right) = \mathcal{O}\left(\frac{(s+R)^2 \ln d}{\epsilon^2}\right)$	$\ \mathbf{x}^* \ _1 \leq R$ \mathbf{x}^* is <i>s</i> -sparse Strong convexity

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

5. Other approaches: Others

- ▶ finite-sum results, e.g.: Liu et al. (2018)
- Holder continuous gradient Shibaev et al. (2021): rate depend on the exponent in the Holder continuous gradient
- Golovin et al. (2019) f(x) = g(Ax) ⇒ ∇f(x) = A^T∇g(Ax): gradient always spanned by a few colums (if k << d). Random descent method that uses that geometry: result in O(k log(d)).
- Optimization on a manifold Li et al. (2021): data is embedded in a Riemannian manifold (of dim. k): result in O(k)
- AutoZOOM Tu et al. (2019): Use of autoencoders to encode the data in a low dimensional space: good empirical results but no convergence rate

5. Other approaches: Promising directions

 distributed setting: the distributed setting is a natural setting for ZO: Zhang et al. (2021)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

► Use some other assumptions on f or \(\nabla f\) and/or improve existing results when having the useful assumptions

Krishnakumar Balasubramanian and Saeed Ghadimi. Zeroth-order (non)-convex stochastic optimization via conditional gradient and gradient updates. In *Proceedings of the 32nd International Conference on Neural Information Processing Systems*, pages 3459–3468, 2018.

- HanQin Cai, Daniel Mckenzie, Wotao Yin, and Zhenliang Zhang. Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. 2020.
- Daniel Golovin, John Karro, Greg Kochanski, Chansoo Lee, Xingyou Song, and Qiuyi Zhang. Gradientless descent: High-dimensional zeroth-order optimization. In *International Conference on Learning Representations*, 2019.
- Kevin G Jamieson, Robert D Nowak, and Benjamin Recht. Query complexity of derivative-free optimization. *arXiv preprint arXiv:1209.2434*, 2012.
- Jiaxiang Li, Krishnakumar Balasubramanian, and Shiqian Ma. Stochastic zeroth-order riemannian derivative estimation and optimization. 2021.

Hongcheng Liu and Yu Yang. A dimension-insensitive algorithm for stochastic zeroth-order optimization. *arXiv preprint arXiv:2104.11283*, 2021.

- Liu Liu, Minhao Cheng, Cho-Jui Hsieh, and Dacheng Tao. Stochastic zeroth-order optimization via variance reduction method. *arXiv e-prints*, pages arXiv–1805, 2018.
- Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan Zhang, Alfred O Hero III, and Pramod K Varshney. A primer on zeroth-order optimization in signal processing and machine learning: Principals, recent advances, and applications. *IEEE Signal Processing Magazine*, 37(5):43–54, 2020.
- Innokentiy Shibaev, Pavel Dvurechensky, and Alexander Gasnikov. Zeroth-order methods for noisy hölder-gradient functions. *Optimization Letters*, pages 1–21, 2021.
- Chun-Chen Tu, Paishun Ting, Pin-Yu Chen, Sijia Liu, Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh, and Shin-Ming Cheng. Autozoom: Autoencoder-based zeroth order optimization method for attacking black-box neural networks. In *Proceedings of the*

AAAI Conference on Artificial Intelligence, volume 33, pages 742–749, 2019.

- Yining Wang, Simon Du, Sivaraman Balakrishnan, and Aarti Singh. Stochastic zeroth-order optimization in high dimensions.
 In International Conference on Artificial Intelligence and Statistics, pages 1356–1365. PMLR, 2018.
- Qingsong Zhang, Bin Gu, Zhiyuan Dang, Cheng Deng, and Heng Huang. Desirable companion for vertical federated learning: New zeroth-order gradient based algorithm. In *Proceedings of the 30th ACM International Conference on Information & Knowledge Management*, pages 2598–2607, 2021.