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1. Introduction on ZO: Zeroth-order optimization

Gradient descent:

Xk+1 = Xk — ")/Vf(Xk)

What if we don't know V£, but only f 7



1. Introduction on ZO: Applications

» Black-Box Adversarial attacks

+.007 x

“panda” noise “gibbon”

57.7% confidence 99.3% confidence
from:https://arxiv.org/abs/1412.6572

> Reinforcement learning

from:https://www.cs.toronto.edu/ vmnih/docs/dqgn.pdf



1. Introduction on ZO: ldea to approximate the
gradient

Idea: approximate the gradient using using finite differences

i

coordinate-wise, e.g. with u; = (0,..,1,...,0).

f(x + pu;) — f(x)

(VF(x)i = .




1. Introduction on ZO: Two points approximation

(from Liu et al. (2020), and

https://scholar.harvard.edu/files/yujietang/files/slides_2019_zero-order_opt_tutorial .pdf)

o+ ) — F)
1
Unbiased, w.r.t a smoothed version of f:

Vf(x)=d with  u ~ Uni(S,_1)
Eyp [@f(x)] = V£ (x)

with
fM(X) = Equni(]B,,) [Vf(x + HU)j|


https://scholar.harvard.edu/files/yujietang/files/slides_2019_zero-order_opt_tutorial.pdf

1. Introduction on ZO: Noisy observations

Generally, in ZO, we don't observe f directly but a noisy version of
f:

Ef(x,£)

noise: &
noise can be additive or not, bounded variance/magnitude, zero
mean or not
Examples:
» physical simulation, reinforcement learning (noisy rewards)

» bi-level optimization: inner problem is solved inexactly



1. Introduction on ZO: Applied to many settings,
with many techniques

> Many settings:

» Stochastic/Deterministic

» Convex or not, Smooth, Strongly Convex...
» Many techniques:

» Variance reduction
» Frank-Wolfe, Proximal, Coordinate descent...



1. Introduction on ZO: Comparison of ZO
algorithms

https://arxiv.org/pdf/2106.02958. pdf#page=5


https://arxiv.org/pdf/2106.02958.pdf#page=5

2. Curse of dimensionality for ZO Curse of
dimensionality for ZO

» Number of operations: We see in the table above that there is
often a O(d) factor — impractical for large d
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2. Curse of dimensionality for ZO Curse of
dimensionality for ZO

» Number of operations: We see in the table above that there is
often a O(d) factor — impractical for large d

» Can we do better ?
» Not without assumptions: Jamieson et al. (2012)



2. Curse of dimensionality for ZO An impossibility
result

Jamieson et al. (2012) “Query Complexity of Derivative-Free
Optimization”

» F. 15 class of all the 7 strongly convex functions,
L-Lipschitz, defined on convex set B C R?, with noisy
observations: E¢(x) = f(x) + w, E[w] = 0, E[w?] = 0%

> If d > 8 and sufficiently large T:

T do?\ 2

inf sup E[f(8")—f(xf)]>c <>
&7 f-efT.L.B T

¢ depends on the oracle and function class parameters + geometry

of B, but is independent of T and n.

= cannot optimize in less than O(d/e?) iterations

Vd

(because €>C—= = T > O(%))
€

Vs



2. Curse of dimensionality for ZO Doing better:
restricting the class of functions

> Let's make some assumptions

» ZORO Cai et al. (2020) (Zeroth Order Regularized
Optimization Method): assumes the gradients are either:

> s sparse: (Vx € RY: ||[VF(x)||o < s)
> or: compressible: |Vf(x)|;) < i~YP||VF(x)||2,p € (0,1)
> Also: ||[V2f(x)||1 < H, L smooth, noisy oracle Er = f(x) + &,
|€| < o, f coercive, VF coercive

» conv. rate in O(slog(d)) !



3. ZORO: Are those assumptions verified 7
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Figure 1: Sorted gradient components at 100 random points in real-world optimization problems.
Such decays indicate the gradients are compressible.
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Figure 2: Sorted Hessian entries at 100 random points in real-world optimization problems. Such
decays indicate the Hesslans are weakly sparse. Note that the asset management problem has fixed
Hessian at all points, thus there is no variance.
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3. ZORO: ZORO

Idea: use compressed sensing to estimate Vf(x):
For p small enough (Taylor expansion), with direction z; (assume
unit norm here):

f(x+ pzj) — f(x)

~~ z,-TVf X
. (x)

so, for n directions (n << d):

f(x+pz1)—f(x)
F(xtuda) —F(x)
y2 , ~ ZTVf(x)

Fxtuzn)—F(x)
I
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estimate of Vf(x) ?



3. ZORO: ZORO

Idea: use compressed sensing to estimate Vf(x):
For p small enough (Taylor expansion), with direction z; (assume
unit norm here):

f(x+ pzj) — f(x)

~ 5T
. ~ z;' Vf(x)
so, for n directions (n << d):
f(x+pz1)—f(x)
f(x—t—uzl;)—f(x)
y2 , ~ ZTVf(x)

F(cknzn) ~(x)
N
Inverse problem: We observe y = ZTVf(x) — What is a good
estimate of Vf(x) ?
Answer:

@f(x) =arg min HZTg —yll2
g/llgllo<s



3. ZORO: Algorithm

Algorithm 1 ZORO

1. Input: xp: initial point; s: gradient sparsity level, a: step size; 6:
query radius, K: number of iterations.

2: m < bislog(d/s) where by is as in Theorem2.2 of ZORO paper.
Typically, by =~ 1 is appropriate

3: z1,...,2Zm  i.i.d. Rademacher random vectors
4: for k=0to K do

5: for i=1to mdo

6: yi < (f(x+0z) — f(x))/6

7: end for

8: y<—\%15[y1,..~,ym]TT

9: Zeﬁ[zl,...,zm]

10: gk ~ argmin|g<s | Zg —y[l2 by CoSaMP
11: Xk+1 — Xk — Bk

12: end for

13: Output: xx: minimizer of the function.




3. ZORO: Query complexity, compressible gradients

> f convex
stepsize: o = 1/L, s large enough s.t. bgs'/2-1/P < 0.35

if € > b3R+\/20H/(1 — 8?)

ZORO finds e-optimal solution in:
1
0] <s|og(d)>
€

1—2(s/d)b*

with probability:

> f restricted v-SC
ZORO finds e-optimal solution in:

1
O (slog(d) log( )
with probability:

1—2(s/d)b*



4, Z0O-BCD: ZO-BCD, exactly sparse gradients

P Separate the features into J blocks
> At each iteration:

> 1) select a block i
> 2) approximate the gradient along this block using sparse
recovery (like ZORO)

» Do a gradient step



4, Z0O-BCD: Even further improvements
Z0O-BCD-RC

Additional techniques:
» Make randomized blocks — to divide and conquer the sparsity

» Reuse the same Rademacher vectors for each block at each
iteration

» Don't sample d/J Rademacher, take random columns from a
circulant matrix created by one vector

Vi 2. e Vd/J

V, V- V, —
C(V): d/J .1 ' d/J 1

V2. o V4 41



4. Z0O-BCD: Convergence rate

stepsize: a = 1/L, query radius 0 = 2,/0/H, assume syt 1 122t 4,
S > Sexact, choose number of CoSaMP n and ¢ such that:
$ (2 for+ Bretl) < < rloo - 1)

- With probability at least 1 ¢ -6 (Jz exp(%)), Z0-BCD-R finds

an e-solution in O(s/€) queries, using O(sd/J?) FLOPS per
iteration and O(sd/J) total memory.

- With probability at least 1- (ﬁp(%)) — (4 Jyfosld/ ) log (4:45/0)
Z0-BCD-RC finds an e-solution in O(s/€) queries, requiring
O(d/J) FLOPS per iteration and O(d/J) total memory.



5. Other approaches: Results on sparsity

» Wang et al. (2018): one of the first works, that achieved
log(d) dependence on the dimension. Stronger assumption:
s-sparsity of the gradient

» Liu and Yang (2021): less assumptions (only approximate

sparsity of the solution), worse bounds, but still logarithmic in
d



5. Other approaches: Comparison

Ta ble: Comparison of query complexity results for techniques using sparsity (taken from Liu and Yang (2021)):
Dp := ||x* — x*||? Although Dy ~ O(d) in general, it can be O(s) when x* has only s-many nonzero
components and the initial solution is chosen to be sparse (e.g., the initial solution can be the all-zero vector).

Algorithms Complexity Assumption

s-sparse gradient
Bounded 1-norm of gradient
o (s(ln d)3> Bounded 1-norm of Hessian
3 Additive randomness
Function sparsity
lIx* Iy < R

Wang et al. (2018)

Compressible gradient
Bounded 1-norm of Hessian

Cai et al. (2020) (ZORO) (@] (s <Ind - In (%)) Restricted strong convexity
Additive randomness

Coercivity
Dys? Dgs 2

O((L-%—JT)(Ind)) )

Balasubramanian and Ghadimi (2018) F. S sjﬁai’:esi’::::t
=0 ((L + 52) (In d)2>
3
Liu and Yang (2021) o (w) [x*]l1 <R
e

— Ix*lh <R

o ( s+Dg+R)? Ind
L
2 X IS s-sparse
R)?Ind )
— o ((s+ )

Liu and Yang (2021) S
trong convexity




5. Other approaches: Others

>
>

>

finite-sum results, e.g.: Liu et al. (2018)

Holder continuous gradient Shibaev et al. (2021): rate depend
on the exponent in the Holder continuous gradient

Golovin et al. (2019)

f(x) = g(Ax) = Vf(x) = ATVg(Ax): gradient always
spanned by a few colums (if k << d). Random descent
method that uses that geometry: result in O(k log(d)).
Optimization on a manifold Li et al. (2021): data is embedded
in a Riemannian manifold (of dim. k): result in O(k)
AutoZOOM Tu et al. (2019): Use of autoencoders to encode
the data in a low dimensional space: good empirical results
but no convergence rate

Black-box ML model

Autoencoder training

H n box M ing
i laffline and one-time process) (with redcued attack space)




5. Other approaches: Promising directions

> distributed setting: the distributed setting is a natural setting
for ZO: Zhang et al. (2021)

» Use some other assumptions on f or Vf and/or improve
existing results when having the useful assumptions
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