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1. Introduction on ZO: Zeroth-order optimization

Gradient descent:

xk+1 = xk − γ∇f (xk)

What if we don’t know ∇f , but only f ?



1. Introduction on ZO: Applications

I Black-Box Adversarial attacks

from:https://arxiv.org/abs/1412.6572

I Reinforcement learning

from:https://www.cs.toronto.edu/ vmnih/docs/dqn.pdf



1. Introduction on ZO: Idea to approximate the
gradient

Idea: approximate the gradient using using finite differences

coordinate-wise, e.g. with ui = (0, ..,

i
↓
1, ..., 0).

(∇̂f (x))i =
f (x + µui )− f (x)

µ
(1)



1. Introduction on ZO: Two points approximation

(from Liu et al. (2020), and
https://scholar.harvard.edu/files/yujietang/files/slides_2019_zero-order_opt_tutorial.pdf)

∇̂f (x) = d
f (x + µu)− f (x)

µ
u with u ∼ Uni(Sn−1)

Unbiased, w.r.t a smoothed version of f :

Eu∼p

[
∇̂f (x)

]
= ∇fµ(x)

with
fµ(x) , Eu∼Uni(Bn)

[
∇̂f (x + µu)

]

https://scholar.harvard.edu/files/yujietang/files/slides_2019_zero-order_opt_tutorial.pdf


1. Introduction on ZO: Noisy observations

Generally, in ZO, we don’t observe f directly but a noisy version of
f :

Ef (x , ξ)

noise: ξ
noise can be additive or not, bounded variance/magnitude, zero
mean or not
Examples:

I physical simulation, reinforcement learning (noisy rewards)

I bi-level optimization: inner problem is solved inexactly



1. Introduction on ZO: Applied to many settings,
with many techniques

I Many settings:
I Stochastic/Deterministic
I Convex or not, Smooth, Strongly Convex...

I Many techniques:
I Variance reduction
I Frank-Wolfe, Proximal, Coordinate descent...



1. Introduction on ZO: Comparison of ZO
algorithms

https://arxiv.org/pdf/2106.02958.pdf#page=5

https://arxiv.org/pdf/2106.02958.pdf#page=5


2. Curse of dimensionality for ZO Curse of
dimensionality for ZO

I Number of operations: We see in the table above that there is
often a O(d) factor → impractical for large d

I Can we do better ?

I Not without assumptions: Jamieson et al. (2012)
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2. Curse of dimensionality for ZO An impossibility
result

Jamieson et al. (2012) “Query Complexity of Derivative-Free
Optimization”

I Fτ,L,B: class of all the τ strongly convex functions,
L-Lipschitz, defined on convex set B ⊂ Rd , with noisy
observations: Ef (x) = f (x) + w , E[w ] = 0, E[w2] = σ2:

I If d ≥ 8 and sufficiently large T :

inf
x̂T

sup
f ∈Fτ,L,B

E[f (x̂T )− f (x∗f )] ≥ c

(
dσ2

T

) 1
2

c depends on the oracle and function class parameters + geometry
of B, but is independent of T and n.
=⇒ cannot optimize in less than O(d/ε2) iterations

(because ε ≥ C

√
d√
T

=⇒ T ≥ O(
d

ε2
))



2. Curse of dimensionality for ZO Doing better:
restricting the class of functions

I Let’s make some assumptions
I ZORO Cai et al. (2020) (Zeroth Order Regularized

Optimization Method): assumes the gradients are either:
I s sparse: (∀x ∈ Rd : ||∇f (x)||0 ≤ s)
I or: compressible: |∇f (x)|(i) ≤ i−1/p||∇f (x)||2, p ∈ (0, 1)

I Also: ||∇2f (x)||1 ≤ H, L smooth, noisy oracle Ef = f (x) + ξ,
|ξ| < σ, f coercive, ∇f coercive

I conv. rate in O(s log(d)) !



3. ZORO: Are those assumptions verified ?



3. ZORO: ZORO
Idea: use compressed sensing to estimate ∇f (x):
For µ small enough (Taylor expansion), with direction zi (assume
unit norm here):

f (x + µzi )− f (x)

µ
≈ zTi ∇f (x)

so, for n directions (n << d):

y ,


f (x+µz1)−f (x)

µ
f (x+µz2)−f (x)

µ
...

f (x+µzn)−f (x)
µ

 ≈ ZT∇f (x)

Inverse problem: We observe y = ZT∇f (x) → What is a good
estimate of ∇f (x) ?
Answer:

∇̂f (x) = arg min
g/||g ||0≤s

||ZTg − y ||2
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3. ZORO: Algorithm

Algorithm 1 ZORO

1: Input: x0: initial point; s: gradient sparsity level; α: step size; δ:
query radius, K : number of iterations.

2: m ← b1s log(d/s) where b1 is as in Theorem2.2 of ZORO paper.
Typically, b1 ≈ 1 is appropriate

3: z1, . . . , zm ← i.i.d. Rademacher random vectors
4: for k = 0 to K do
5: for i = 1 to m do
6: yi ← (f (x + δzi )− f (x))/δ
7: end for
8: y← 1√

m
[y1, . . . , ym]>

9: Z ← 1√
m

[z1, . . . , zm]>

10: ĝk ≈ arg min‖g‖0≤s ‖Zg − y‖2 by CoSaMP
11: xk+1 ← xk − αĝk

12: end for
13: Output: xK : minimizer of the function.



3. ZORO: Query complexity, compressible gradients

I f convex
stepsize: α = 1/L, s large enough s.t. b4s

1/2−1/p ≤ 0.35
if ε > b3R

√
2σH/(1− 8ψ2)

ZORO finds ε-optimal solution in:

O

(
s log(d)

1

ε

)
with probability:

1− 2(s/d)b2s

I f restricted ν-SC
ZORO finds ε-optimal solution in:

O (s log(d) log(
1

ε
))

with probability:

1− 2(s/d)b2s



4. ZO-BCD: ZO-BCD, exactly sparse gradients

I Separate the features into J blocks
I At each iteration:

I 1) select a block i
I 2) approximate the gradient along this block using sparse

recovery (like ZORO)

I Do a gradient step



4. ZO-BCD: Even further improvements
ZO-BCD-RC

Additional techniques:

I Make randomized blocks → to divide and conquer the sparsity

I Reuse the same Rademacher vectors for each block at each
iteration

I Don’t sample d/J Rademacher, take random columns from a
circulant matrix created by one vector

C(v) =


v1 v2 · · · vd/J
vd/J v1 · · · vd/J−1

...
. . .

. . .
...

v2 · · · vd/J v1

 . (2)



4. ZO-BCD: Convergence rate

stepsize: α = 1/L, query radius δ = 2
√
σ/H, assume 4ρ4n + 16τ2σH

c1Lmax
< 1,

s > sexact, choose number of CoSaMP n and ε such that:
c1
2

(
2ρ2n +

√
ρn + 16τ2σH

c1ζLmax

)
< ε < f (x0 − f ∗)

- With probability at least 1− ζ − Õ
(

J2

ε
exp(

−0.01sexact
3J

)

)
, ZO-BCD-R finds

an ε-solution in Õ(s/ε) queries, using Õ(sd/J2) FLOPS per
iteration and Õ(sd/J) total memory.
- With probability at least 1− Õ

(
J2

ε
exp(

−0.01sexact
3J

)

)
− (d/J)log(d/J) log

2(4.4s/J),

ZO-BCD-RC finds an ε-solution in Õ(s/ε) queries, requiring
Õ(d/J) FLOPS per iteration and O(d/J) total memory.



5. Other approaches: Results on sparsity

I Wang et al. (2018): one of the first works, that achieved
log(d) dependence on the dimension. Stronger assumption:
s-sparsity of the gradient

I Liu and Yang (2021): less assumptions (only approximate
sparsity of the solution), worse bounds, but still logarithmic in
d



5. Other approaches: Comparison

Table: Comparison of query complexity results for techniques using sparsity (taken from Liu and Yang (2021)):

D0 := ‖x1 − x∗‖2 Although D0 ∼ O(d) in general, it can be O(s) when x∗ has only s-many nonzero
components and the initial solution is chosen to be sparse (e.g., the initial solution can be the all-zero vector).

Algorithms Complexity Assumption

Wang et al. (2018) O
(

s(ln d)3

ε3

) s-sparse gradient
Bounded 1-norm of gradient
Bounded 1-norm of Hessian

Additive randomness
Function sparsity
‖x∗‖1 ≤ R

Cai et al. (2020) (ZORO) O
(
s · ln d · ln

(
1
ε

)) Compressible gradient
Bounded 1-norm of Hessian
Restricted strong convexity

Additive randomness
Coercivity

Balasubramanian and Ghadimi (2018)
O
((

D0s
2

ε
+

D0s

ε2

)
(ln d)2

)
=O

((
s3

ε
+ s2

ε2

)
(ln d)2

) s-sparse gradient
x∗ is s-sparse

Liu and Yang (2021) O
(

(D0+R)3 ln d

ε3

)
‖x∗‖1 ≤ R

Liu and Yang (2021)
O
(

(s+D0+R)2 ln d

ε2

)
= O

(
(s+R)2 ln d

ε2

) ‖x∗‖1 ≤ R
x∗ is s-sparse

Strong convexity



5. Other approaches: Others

I finite-sum results, e.g.: Liu et al. (2018)

I Holder continuous gradient Shibaev et al. (2021): rate depend
on the exponent in the Holder continuous gradient

I Golovin et al. (2019)
f (x) = g(Ax) =⇒ ∇f (x) = AT∇g(Ax): gradient always
spanned by a few colums (if k << d). Random descent
method that uses that geometry: result in O(k log(d)).

I Optimization on a manifold Li et al. (2021): data is embedded
in a Riemannian manifold (of dim. k): result in O(k)

I AutoZOOM Tu et al. (2019): Use of autoencoders to encode
the data in a low dimensional space: good empirical results
but no convergence rate



5. Other approaches: Promising directions

I distributed setting: the distributed setting is a natural setting
for ZO: Zhang et al. (2021)

I Use some other assumptions on f or ∇f and/or improve
existing results when having the useful assumptions
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