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We will study those two papers:

» Gradients without Backropagation: [Baydin
et al.(2022)Baydin, Pearlmutter, Syme, Wood, and Torr]

» Learning by directional gradient descent: [Silver
et al.(2021)Silver, Goyal, Danihelka, Hessel, and van Hasselt]



Backpropagation

Most deep learning pipelines use backpropagation.
Example:

y = f(g(h(x)))

Need to process the whole chain (forward pass), then
backpropagate through it (backward pass).

Chain can be very long (e.g. recurrent neural networks). We need
to keep all the activations in memory (h(x), g(h(x)), f(g(h(x))))



Solution: directional derivative

We can try to estimate the gradient with an exact directional
derivative:

vemactf(x) = <Vf($)7 u>u
Can be computed efficiently using forward mode automatic

differentiation (see next slides): just need (= 3) forward pass, and
past activations can be forgotten.



Note: Similar to Zeroth-order, but exact

o sty = 0+ 0 =)

(Note: 2 forward pass)
But it is biased:

u (Vf(z), u)u

EVrpf(z) = Vd(z) # Vf(x)

When the exact directional derivative is unbiased:

IEuvexactf(x) = Vf(x)



Question

How can we compute the exact directional derivative ?

A

Vezactf (1) = (Vf(x), u)u

— use the JVP: Jacobian Vector Product (Ju (gradient is a 1-row
Jacobian))
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(JVP: efficient implementation existing in AD libraries: JAX,
pytorch, tensorflow... )



How is it implemented? Forward-mode vs Backwards mode

a=f(x). b=g@. y=nhh).
This gives us the Jacobian
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with the size of each matrix noted below the matrix. The time taken to compute each of those
intermediate Jacobians is fixed, but the order in which we multiply them changes the number of

operations required to do so. Forward differentiation would compute
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‘which involves |x] - |a] - [b] + [X| - [B| - |¥| multiplications*. In contrast, reverse differentiation would
compute
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‘which involves |y| - |a] - [b] + |¥| - |a] - |X| multiplications.

> BM:

» need to compute the whole graph, then backpropagate
through the whole graph
» good for f: R" — R

» memory saving: forward pass with forgetting.
»> Good for f : R — R™ (But for jvp: efficient even for
f:R"” — R: because dot product with © on the right)



Computational graph

In practice, libraries make use of the computational graph :

Tim, ¥l = axh + bmy + oy"2



Computational graph: Forward mode using dual numbers

Similar to complex numbers (a + bi, i> = —1), we consider dual
numbers (v + Ve, €2 =0 )

(v+ v€) + (u+ue) = (v +u) + (0 + e
(v + v€)(u + te) = (vu) + (ud + vit)e

f(@) = f(v+1e) = f(v) + f'(v)ve

— We start with say z + eu. Then, at each node n, we compute:
n(v), (n'(v)), and then n’(v)v (so 3 computations). Then for
merging (addition, multiplication) we use the rules above. We keep
everytime, separately, both the "v" and the "¢". The final "o" is
the JVP J(2)u.



Real-life view in libraries (continued)

So it is convenient to implement: for each node (elementary
function), just need to code it as a “dual” node:

y + ye = n(x + e)

(v,9) = n(z, @)

using the rules above



Remarks on Twitter

» High variance/Curse of dim. (if 1 random direction)

e Nick McGreivy @NMcGreivy - 18 févr. -

© Nick McGreivy GNViGreivy - 18 fév.
This paper s highly misieading.

“Fonward gradient” is ~100x slower, because it requires a leaning rate
of fe-4 instead of 1e-2 w/ SGD. Clearly, this does not "entirely eliminate
the need for" backprop.

To check, simply change a few lines from the JAX MNIST tutorial
twitter.com/arankomatsuzak.

Afficher cette dis

O_parsns, )

Charles %, Frye @charles il - 25 féur -
There's been some back-and-forth about this paper on getting gradients
without doing backpropagation, 5o | took a minute to write up an analysis

on what breaks and how it might be fixed.

tidir: the estimated gradients are _really_ noisy! like wow

esfrye. github. o/pdfs/SNR-Forwa.

© Aran Komatsuzaki Garankomatsuzaki - 18 févr.
Gradients vithout Backpropagation

Presents a method to compi based solely on

» Generalization

Nick McGreivy ONMcGreivy - 18 févr
En réponse & @NMcGreiv

JAX MNIST tutorial: Jax.

adthed

t/nos

There's another more subtle issue, which s that low loss = good
performance. Even with a higher 0ss vlue, SGD train/test accuracy is
significantly higher than "forward grad'.

[s} (=1} (VY &




Remarks on Twitter: what if we use our ZO-HT ?

» High variance/Curse of dim. ZO-HT: we keep only &
components of x. Preliminary results indicate that we need
O(k) instead of O(d) random directions.

» Generalization ZO-HT tries to learn a sparsity-constrained
solution (maybe related: “Stability and Risk Bounds of
Iterative Hard Thresholding” (XT Yuan), “The Lottery Ticket
Hypothesis” (Frankle))



Conclusion

An “Exact ZO": could be useful if we want to:
» have the advantages of ZO (low cost)
» but without the smoothing bias (because of €)

(if we have access to differentiation)
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