
Forward mode and directional derivatives

William de Vazelhes

MBZUAI

March 2, 2022



We will study those two papers:
I Gradients without Backropagation: [Baydin

et al.(2022)Baydin, Pearlmutter, Syme, Wood, and Torr]
I Learning by directional gradient descent: [Silver

et al.(2021)Silver, Goyal, Danihelka, Hessel, and van Hasselt]



Backpropagation

Most deep learning pipelines use backpropagation.
Example:

y = f(g(h(x)))

Need to process the whole chain (forward pass), then
backpropagate through it (backward pass).
Chain can be very long (e.g. recurrent neural networks). We need
to keep all the activations in memory (h(x), g(h(x)), f(g(h(x))))



Solution: directional derivative

We can try to estimate the gradient with an exact directional
derivative:

∇̂exactf(x) = 〈∇f(x), u〉u

Can be computed efficiently using forward mode automatic
differentiation (see next slides): just need (≈ 3) forward pass, and
past activations can be forgotten.



Note: Similar to Zeroth-order, but exact

∇̂FDf(x) = f(x+ εu)− f(x)
ε

u ≈ 〈∇f(x), u〉u

(Note: 2 forward pass)
But it is biased:

Eu∇̂FDf(x) = ∇fε(x) 6= ∇f(x)

When the exact directional derivative is unbiased:

Eu∇exactf(x) = ∇f(x)



Question

How can we compute the exact directional derivative ?

∇̂exactf(x) = 〈∇f(x), u〉u

→ use the JVP: Jacobian Vector Product (Ju (gradient is a 1-row
Jacobian))

(JVP: efficient implementation existing in AD libraries: JAX,
pytorch, tensorflow... )



How is it implemented? Forward-mode vs Backwards mode

I BM:
I need to compute the whole graph, then backpropagate

through the whole graph
I good for f : Rn → R

I FM:
I memory saving: forward pass with forgetting.
I Good for f : R→ Rn (But for jvp: efficient even for

f : Rn → R: because dot product with u on the right)



Computational graph

In practice, libraries make use of the computational graph :



Computational graph: Forward mode using dual numbers
Similar to complex numbers (a+ bi, i2 = −1), we consider dual
numbers (v + v̇ε, ε2 = 0 )

→ We start with say z + εu. Then, at each node n, we compute:
n(v), (n′(v)), and then n′(v)v̇ (so 3 computations). Then for
merging (addition, multiplication) we use the rules above. We keep
everytime, separately, both the ”v” and the ”v̇”. The final ”v̇” is
the JVP J(z)u.



Real-life view in libraries (continued)

So it is convenient to implement: for each node (elementary
function), just need to code it as a “dual” node:

y + ẏε = n(x+ ẋε)

(y, ẏ) = n(x, ẋ)

using the rules above



Remarks on Twitter

I High variance/Curse of dim. (if 1 random direction)

I Generalization



Remarks on Twitter: what if we use our ZO-HT ?

I High variance/Curse of dim. ZO-HT: we keep only k
components of x. Preliminary results indicate that we need
O(k) instead of O(d) random directions.

I Generalization ZO-HT tries to learn a sparsity-constrained
solution (maybe related: “Stability and Risk Bounds of
Iterative Hard Thresholding” (XT Yuan), “The Lottery Ticket
Hypothesis” (Frankle))



Conclusion

An “Exact ZO”: could be useful if we want to:
I have the advantages of ZO (low cost)
I but without the smoothing bias (because of ε)

(if we have access to differentiation)



References

https://math.stackexchange.com/questions/2195377/
reverse-mode-differentiation-vs-forward-mode-differentiation-where-are-the-be
http://www.ams.org/publicoutreach/feature-column/
fc-2017-12 https://blog.demofox.org/2014/12/30/
dual-numbers-automatic-differentiation/
https://towardsdatascience.com/
forward-mode-automatic-differentiation-dual-numbers-8f47351064bf
https://mostafa-samir.github.io/auto-diff-pt1/
https://medium.com/tebs-lab/
deep-neural-networks-as-computational-graphs-867fcaa56c9
https:
//twitter.com/charles_irl/status/1497129714195992578
https://twitter.com/arankomatsuzaki/status/
1494488254304989228

https://math.stackexchange.com/questions/2195377/reverse-mode-differentiation-vs-forward-mode-differentiation-where-are-the-be
https://math.stackexchange.com/questions/2195377/reverse-mode-differentiation-vs-forward-mode-differentiation-where-are-the-be
http://www.ams.org/publicoutreach/feature-column/fc-2017-12
http://www.ams.org/publicoutreach/feature-column/fc-2017-12
https://blog.demofox.org/2014/12/30/dual-numbers-automatic-differentiation/
https://blog.demofox.org/2014/12/30/dual-numbers-automatic-differentiation/
https://towardsdatascience.com/forward-mode-automatic-differentiation-dual-numbers-8f47351064bf
https://towardsdatascience.com/forward-mode-automatic-differentiation-dual-numbers-8f47351064bf
https://mostafa-samir.github.io/auto-diff-pt1/
https://medium.com/tebs-lab/deep-neural-networks-as-computational-graphs-867fcaa56c9
https://medium.com/tebs-lab/deep-neural-networks-as-computational-graphs-867fcaa56c9
https://twitter.com/charles_irl/status/1497129714195992578
https://twitter.com/charles_irl/status/1497129714195992578
https://twitter.com/arankomatsuzaki/status/1494488254304989228
https://twitter.com/arankomatsuzaki/status/1494488254304989228


Atılım Güneş Baydin, Barak A Pearlmutter, Don Syme, Frank
Wood, and Philip Torr.
Gradients without backpropagation.
arXiv preprint arXiv:2202.08587, 2022.

David Silver, Anirudh Goyal, Ivo Danihelka, Matteo Hessel,
and Hado van Hasselt.
Learning by directional gradient descent.
In International Conference on Learning Representations, 2021.


